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Abstract

Chest X-Ray classification is a challenging and time consuming task in medical image classification due to the complexity of the
human chest structure and the subtle variations in X-Ray images caused by different medical conditions. This paper presents a
model, DCXNet that can detect 14 different chest conditions from Chest X-Rays. The model makes use of deep learning techniques
and transfer learning methods for better accuracy and faster training time. The presented model, DCXNet is a customized
DenseNet-169 model which is a 169 layer Convolutional Neural Network (CNN) trained on ChestX-Ray14, one of the largest
publicly available Chest X-Ray dataset, containing over 112,000 frontal view X-Ray images of 30,805 unique patients with 14 chest
conditions. This dataset was obtained from National Institutes of Health (NIH), USA. Various tools like NumPy, Pandas were used
for initial data analysis, while Matplotlib and Seaborn was used for data visualization. The presented model was implemented in
Tensorflow.

The presented model is compared to other existing models on the basis of AUC metric. The mean AUC of the presented model
is 0.82 which outperformed Wang (AUC > 0.09) and Yao (AUC > 0.02) and acheived on par performance with CheXNeXt (AUC
< 0.02). The training time was much faster than CheXNeXt which took around 20 hours for each training stage while the presented

model DCXNet completed training in just 4 hours.
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1. Introduction

The most used imaging test worldwide is chest radiography,
which is essential for the early detection, diagnosis, and
treatment of many serious illnesses. Chest illnesses are a major
public health concern in the country. Radiology is currently a
growing field in Nepal. Nepal has evolved over the years, with
the introduction of new technologies and advanced imaging
techniques. However, there are still challenges that need to be
addressed, such as the shortage of trained radiologists. Only 300
radiologists are registered in Nepal as of 2021, which is
insufficient to service the entire country’s population, according
to the Nepal Medical Council. In remote locations, where there
are few or no radiologists accessible, the lack of radiologists is
extremely severe, making it challenging for patients to get
diagnostic imaging services. The availability of skilled
radiologists is essential for the difficult process of identifying
various chest ailments from X-rays.

This paper presents a model which can automatically detect 14
different chest conditions namely Effusion, Cardiomegaly,
Emphysema, Nodule, Pneumonia, Pleural Thickening, Hernia,
Fibrosis, Infiltration, Pneumothorax, Edema, Consolidation,
Mass and Atelectasis from chest X-Rays. This paper proposes
the use of customized Densent-169[1] for the classification of
chest X-Rays. The paper proposes the use of a customized
weighted cross-entropy loss to handle the problem of class
imbalance in the dataset. This paper also proposes using
Grad-CAM'[2] to create images of each class with localized
heatmaps.

The performance of this model was compared to CheXNeXt[3].
The training period of DCXNet was significantly less than
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CheXNeXt. CheXNeXt required nearly 20 hours for each
training stage while DCXNet only required 4 hours of training.
It was found that the presented model, DCXNet performs on par
with CheXNeXt and even outperforms it on 4 of the chest
conditions namely Cardiomegaly, Emphysema, Fibrosis and
Hernia.

2. Literature Review

In the realm of medical image processing, categorization of
chest X-rays has been a hotly debated subject. The authors of
[1] defined a network architecture called Densenet. This
architecture shows methods on how convolutional networks can
be trained much more thoroughly, precisely, and quickly which
helps in multi-label classifcation problems. The authors in [4]
presented a dataset called ChestX-ray8, which contains 108,948
X-Ray images with 8 chest conditions. They also demonstrated
that these 8 conditions can be located via weakly-supervised
multi-label image classification. The authors of [5] introduced
and assessed a partial resolution that utilizes LSTMs to exploit
connections among target labels to predict 14 pathological
patterns from chest X-ray images. They achieved leading
performance results on the most extensive publicly accessible
chest X-ray dataset from the NIH without any pre-training in
2018. In order to diagnose 14 distinct chest disorders, the
authors of [3] compares the effectiveness of the CheXNeXt
algorithm to that of professional radiologists. The outcomes
demonstrate that the algorithm performed on par with
radiologists and has the ability to support clinical judgment.
This paper produces best outcomes on ChestX-Ray14 dataset
with the help of ensemble methods but requires vey large
training periods as training is done in two steps. In the 1st step
nearly 10 different networks are trained and then few of the best
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performing models are then selected to create the final model.
This does produce better results but at high cost of training time.

3. Methodology

3.1 Block Diagram
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Figure 1: Block Diagram

3.2 Data

The data used for training the model was obtained from NIH?
which contained 112,000 frontal-view X-Ray images of 30,805
unique patients. The dataset is known as ChestX-Ray14. The
dataset contains 14 labels for each image with values either 0
indicating negative for the label and 1 meaning that the image is
positive for the label.

3.2.1 Data Preprocessing

The total size of obtained database was 42.5 GB. The labels for
all images were stored in a CSV file. The file was then loaded into
dataframe using pandas. The path to each image was obtained
and added to dataframe. All of labels were identified and one-hot-
encoding was performed. The images were normalized based on
the mean and standard deviation of images in the dataset. The
images were then resized to target size of 320x320.

3.2.2 Training Set

The dataset was initially split randomly using group shuffle split
into 70% and 30%, with 70% being the training set. Remaining
30% of data was then again split into two equal halves for test
and validation sets. The training set contains 78,566 images
while both the validation and test contains 16,777 images each.
No data overlapping was found between these sets.

3.2.3 Test Set

After splitting the data, the test set had 16,777 frontal chest X-
Rays. According to NIH, these images were annotated by four
practicing radiologists at Stanford University. Radiologists were
not given access to any patient information or were informed of
the prevalence of any diseases in the data.

3.3 Loss function and Class Imbalance

The dataset that was used to train the model is prone to class
imabalce problem. EDA3 on the training dataset led to the
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Figure 2: Imbalance in the dataset

* The most unbalanced pathology is Hernia, with 0.1% of
patients testing positive for training..

* However, only 17.5% of the training instances for the
Infiltration pathology, which has the least degree of
imbalance, have been classified as positive.

This class imbalace issue doesnot allow for a normal
cross-entropy loss for each class. For a balanced data set the loss
function is:

L(x;)

= —(ilog(f(xi)) + (1 —yi)log(1 = f(xi)))

where x; and y; are the input features and their corresponding
labels and f(x;) is the output of the model which indicates the
probability that it is positive. With the use of this formulation, we
can observe that the loss will be dominated by the negative class
in situations when there is a significant imbalance and there are
few positive training events. One way of balancing such datasets
require multiplying each class by a class-specific weight factors,
wp and w,, where w), is the frequency of negative samples and
wy, 1s the frequency of positive samples for each class. Then the
previous unweighted loss function was modified as:

LY (x) = —(wpylog(f(x)) +wa(l —y)log(1 - f(x)))

This equation was used to calculate the loss for each class and
then the total loss can be calculated as the mean of the loss of
each of the classes.

3.4 Model Architecture and Training

The presented model, DCXNet is a customized Densent-169[1],
a 169 layer Convolutional Neural Network trained on the
ChestX-ray14 dataset. DenseNets enhance information flow and
gradients inside the network, making very deep network
optimization feasible. The final fully connected layer was
replaced with a global average pooling layer after which a fully
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connected layer which produces a 14-dimensional output was
added. After which, element-wise sigmoid non-linearity was
applied.

The weights of the presented model were initialized with weights
from a model pretrained on ImageNet[6]. This network was
trained using Adam[7] optimizer. Adam is a powerful variation
of the stochastic gradient descent optimization technique, which
iteratively adjusts parameters to reduce training-related loss. The
model was trained in mini-batches of size of 32.

While training there were 100 steps per epoch and 50 validation
steps for each epoch. Initial learning rate of le —4 was used
which was decayed by a factor of 20 each time the validation
loss plateaued after 3 epochs. Model checkpointing was used

to save the model every time after validation loss improved.

Early stopping callback was used to stop the training once the
validation loss didnot improve for the last 15 epochs. Other forms

of regularization such as dropout or weight decay was not used.

Then, the model with the lowest validation loss was picked. Each
step of training completed after 3 minutes on a single NVIDIA
Tesla P100. The presented network had 12,507,790 trainable
parameters.

4. Results and comparision with previous
State-of-the-Art models

The presented model outputs a vector for each label with values
ranging between 0 — 1 providing the probability of presence of
the following 14 chest conditions: Atelectasis, Cardiomegaly,
Consolidation, Edema, Effusion, Emphysema, Fibrosis, Hernia,
Mass, Nodule, Pleural Thickening, Infiltration, Pneumonia and
Pneumothorax.
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Figure 3: Training/Validation Loss Curve

Figure 3 shows the training/validation loss curve. In the image
one can see that both training and validation losses are high in
the beginning. They gradually decrease upto the 20th epoch.
After which, the validation loss decreases very less with respect
to training loss. However, the least validation loss is obtained
at 65th epoch. The training was stopped at 80th epoch by early
stopping callback. Spikes can be seen in the curve which is the
effect of using mini-batch gradient descent.

To compare the DCXNet to previous algorithms, a single

diagnostic performance measure, AUC* was used. AUC is a
metric that indicates how well a model fits. In the medical field,
this value also represents the likelihood that a patient who
suffered a condition would have a greater risk score than a
patient who didn’t experience the event, if chosen at random. It
summarizes the model’s performance across various thresholds
and provides a reliable indication of its ability to distinguish
between different cases. AUC was chosen because it doesnot
require a threshold value and we donot need to convert our
model outputs to binary predictions as the model outputs a
vector between 0 — 1 for every class which indicates the
probability of every class for a provided image. This AUC was
calculated using sklearn library which plots a ROC> curve and
then calculates the area under the curve using Simpson’s rule.

The performance of the presented model was compared to
Wang[4], Yao[5] and CheXNeXt[3] in Table 1. From the table,
it can be seen that DCXNet performs on par with CheXNeXt on
labels Atelectasis, Cardiomegaly, Effusion, Infiltration, Fibrosis,
Hernia, Pnemothatorax and Pleural thickening (Difference of
AUC <0.07 ). CheXNeXt has higher performance on Mass,
Nodule and Pneumonia class(AUC > 0.1). DCXNet has
marginal improvement over CheXNeXt in Cardiomegaly,
Fibrosis and Hernia class. DCXNet has larger improvement in
the Emphysema class with the AUC difference > 0.2 .

One can also see that DCXNet performly poorly on Mass,
Pneumonia and Nodule pathology if compared to CheXNeXt[3]
but still better than Wang[4] and Yao[5]. This is because
CheXNeXt uses ensemble methods which creates multiple
models and chooses best among them to create a final model.
This was a necessary trade-off to reduce the training period for
DCXNet, hence DCXNet performs poorly on some classes than
CheXNeXt.

Table 1: Performance comparision of presented model with
state-of-the-art models on basis of AUC

Condition Wang[4] Yao[5] CheXNeXt[3] DCXNet
Atelectasis 0.716 0.772 0.862 0.804
Cardiomegaly 0.807 0.904 0.831 0.897
Effusion 0.784 0.859 0.901 0.874
Infiltration 0.609 0.695 0.721 0.706
Mass 0.706 0.792 0.909 0.792
Nodule 0.671 0.717 0.894 0.735
Pneumonia 0.633 0.713 0.851 0.735
Pneumothorax 0.806 0.841 0.944 0.876
Consolidation 0.708 0.788 0.893 0.823
Edema 0.835 0.882 0.924 0.89
Emphysema 0.815 0.829 0.704 0.907
Fibrosis 0.769 0.767 0.806 0.81
Plural Thickening 0.708 0.765 0.798 0.782
Hernia 0.767 0914 0.851 0.856

5. Model Interpretation

Using class activation mappings(CAMSs)[2], the presented model
created heat maps to show the regions of the chest radiograph
that contributed most to the network’s categorization for use
in interpreting predictions. To generate these CAMs, images
were fed to the trained network and feature maps were obtained
from final layer of the network. A map of most salient features

4Area Under the Curve
SReceiver Operating Characteristic
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used to classify image containg a class is obtained by taking the
weighted sum of feature maps using associated weights in the
final fully connected layer. By scaling the map to fit the image’s
size and superimposing it on top of the image, the most crucial
features, the model utilized to predict the condition were shown
in the image.

Cardiomegaly: p=0.949

Figure 4: Patient with cardiomegaly. The model was able to
correctly predict the presence of cardiomegaly (Enlarged Heart)
and localize it using CAM

6. Conclusion

The majority of patient morbidity and mortality is caused by
disorders of the chest. In order to avoid consequences, including
death, early diagnosis of these illnesses is essential. The most
often used imaging examination tool in practice is the Chest
X-Ray, which is essential for the screening, diagnosis, and
treatment of a number of disorders. However, the shortage of
radiologists is particularly acute in rural areas in Nepal which
makes it difficult for patients to access diagnostic imaging
services. Even with the availability of imaging technology, there
is a lack of specialists who can interpret X-rays, which increases
mortality from diseases that are curable.

This paper presents a model, DCXNet, which detects 14
different chest conditions from frontal-view chest X-Ray images
whose performance is on par with CheXNeXt[3] which claims
their performances are at a level exceeding practicing
radiologists. The presented model has a mean AUC of 0.82
while CheXNeXt has mean AUC of 0.84. This marginal
improvement of CheXNeXt is the result of using ensemble
methods which takes significantly larger training time. But the

proposed model was able to achieve on par score with
CheXNeXt just by replacing Densenet-121 in CheXNeXt
algorithm with Densenet-169. The training time was significatly
reduced only to 4 hours because of using transfer learning.

With the automation of this calibre, we anticipate that this
technology will enhance the delivery of healthcare and provide
access to medical imaging expertise in regions with a shortage
of qualified radiologists.

7. Limitations

There are a few limitations of the presented model. Only frontal
X-Rays were used to train this model but some of the conditions
require lateral view for accurate diagnosis. Thus, it is
anticipated that this configuration offers a conservative estimate
of performance. The model’s inability to access patient history
is another drawback, which lowers its diagnostic performance
when analyzing chest X-rays.
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