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Abstract
An analytical approach has been developed for the axisymmetric analysis of lattice cylindrical shells as a
homogenization technique based on the equivalent continuum shell theory. This approach has been applied
to the case of axisymmetric strained state of lattice cylindrical shells considering variation in geometry and
lattice configurations. The major contrast between continuous shells and lattice shells is found to be in the
constitutive equations. The geometry is lattice cylindrical shells subjected to uniformly distributed load in
longitudinal and transverse directions. The boundary conditions are fixed edge at the origin/bottom end of
the shell and loads applied at the z = L or the top edge of the shell. The analytical solution is obtained using
the homogenization technique via MATLAB coding. The results are compared to that obtained from the FEM
package ANSYS. Also, the parametric analysis has been done to study the effect of change in radius, length
and grid length as well as various lattice configurations of the lattice cylindrical shell. Lattice configuration n =
4 has been found to have less deformations.
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1. Introduction

Shells are spatially curved surface structures that can
withstand externally applied loads. They can be
defined by their middle plane, thickness and material
properties. As a result of their curvature, shells can
support out-of-plane loads using in-plane membrane
forces, which is one of the main reasons why they are
such durable and affordable constructions. Among
several shell types, surfaces of revolution are
generated by the revolution of a meridional curve,
about an axis of revolution. The meridional curve is a
straight line segment in case of cylinder and conical
surfaces.

Shells can be designed in the form of lattice shells,
which derives its strength from its double curvature,
but is constructed of lattices or grids. Considering this,
when shell of revolution is constructed as a lattice
shell, the resulting structure becomes relatively light
and exceedingly efficient; making it simple and quick
to erect. Shells constituting of lattices have been
considered a fine replacement to solid shells.

A lattice structure is a network of connected ribs
composed of continuous, incredibly strong, stiff, and
durable metals or fibres. Various configurations are
possible for the ribs that make up a structure.
Typically, an axial load is applied to the ribs making
up a grid construction. They can be constructed with
variety of cross-sections, skin thickness, lattice’s
configuration.

The analysis of lattice cylindrical shells has been
taken considering the static, geometric [1]and
constitutive equations[2]. For axisymmetrical strained
state of the shell, the variables of the shell along the
circumferential direction vanish and the system of
equations governing the statics of the shell can be
rather simplified, which further helps in quick
analysis of the shell structure.

The deformations of a structure are usually calculated
from the stress in the lattices. The one layer
reticulated shell theory based on continuum design
model can been done [2], which gives the
homogenization technique for the shell of revolution.

Pages: 1819 – 1824



Axisymmetric Analysis of Cylindrical Shells Considering Geometry and Lattice Variation

The models differ from the general shell theory in
terms of the basic group of equations involved such
that the statics, kinematics equations are the same as
usual whereas, the constitutive equations, depending
on the lattice structure and material gets more
complicated. First, the constitutive equation for the
structural members, i.e. its constituent grids of the
reticulated shells need to be calculated. Then, those
equations can be used for the determining the forces,
moments, stresses in the lattices considering various
configuration. Brief idea on loading conditions and
lattice configuration has been provided.

The analysis of lattice shells of revolution for the
structure loaded with tension and torque can be found
in Slinchenko (2001) [3]. The numerical results were
obtained for the equivalent homogeneous model of the
cylindrical structure with three families of ribs. And,
optimum design and criteria for failure of ribs can be
found in Slinchenko (2000) [4].

2. Theoretical Background and
Methodology

The proposed method treats the elastic shell as a
continuous system, in which external stresses and the
stress-strain state are represented by functions. This
helps for the proper application of methods of solid
mechanics in the analysis of lattice shells. The axes of
the structural members form the families of ribs on
the median surface of shell.

Figure 1: Directions of forces and moments acting in
a general shell [3]

The positioning of points on the middle surface of the
shell of revolution is done considering the cylindrical
coordinates z, θ .

The surface meridian of the shell has the equation
r = r (z). We put the primary curvature radii R1, R2
of the middle surface and coefficients A, B of the first
quadratic form as:

A =
(
1+ r′2

)1/2
,B = r (1)

r′′R1 =−
(
1+ r′2

)3/2
,R2 = r

(
1+ r′2

)1/2
(2)

In the case of axisymmetrical strained state of the shell
of rotation, all the desired functions depend only on
coordinate z. Here,

v = ω = τ = S = Q2 = H = Y = 0 (3)

Now, the system of the equations above can be reduced
to:

Static equations:

∂

∂ z
(BN1)−N2

∂B
∂ z

−Q1
AB
R1

+ABX = 0

∂

∂z
(BQ1)+AB

(
N1

R1
+

N2

R2

)
+ABZ = 0

∂

∂z
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∂B
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−ABQ1 = 0

(4)

Geometric equations:

ε1 =
1
A

∂u
∂ z

−K1w

ε2 =
1

AB
∂B
∂ z

u−K2w

χ1 =− 1
A

∂

∂ z

(
u

R1
+

1
A

∂w
∂ z

)
,

χ2 =− 1
AB

∂B
∂ z

(
u

R1
+

1
A

∂w
∂ z

)
,

γ1 = K1u+
1
A

∂w
∂ z

(5)

Constitutive equations:

N1 = α11ε1 +α12ε2

N2 = α12ε1 +α22ε2

M1 = γ11χ1 + γ12χ2

M2 = γ12χ1 + γ22χ2

(6)
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The above equations can be reduced into the form:

y′(z) = P(z)y(z)+ f (z), (7)

where,

y = [u;w;γ1;N1;M1;Q1] (8)

f = [ f1 = 0; f2 = 0; f3 = 0; f4 =−AX ; f5 = 0; f6 =−AZ]

(9)

And, P is 6*6 matrix obtained from the above equation.

For lattice cylinder containing n = 4 family of ribs:

Figure 2: Lattice configuration

a1 = a2 = a,φ1 =−φ2 = φ ,a = 2a3s = 2a4s

A = 1,B = 1,R1 = ∞,R2 = r

α11 = 2Kc4 +K4,α12 = 2Kc2s2,α22 = 2Ks4 +K3,

γ11 = 2Ic4 + I4 +2Cc2s2,γ12 = 2(I −C)c2s2,

γ22 = 2Is4 + I3 +2Cc2s2

where,

Ki =
EiFi

ai
, Ii =

EiJ1i

ai
,Ci =

GiJ3i

ai
.

For lattice cylinder containing n = 3 family of ribs:

A = 1,B = 1,R1 = ∞,R2 = r,

α11 =
9EF

a
,α12 =

3EF
a

,α22 =
9EF

a
,

γ11 =
3EJ1(3+m)

8a
,γ12 =

3EJ1(3+m)

8a
(1−m)

(3+m)
,

γ22 =
3EJ1(3+m)

8a
where,

m =
GJ3

EJ1

3. Results and Discussions

Analytical solution has been done using the
homogenization method in computation package
MATLAB. Deformations have been calculated for the
grid cylindrical structure with number of grids n = 4
as in figure 3 and n = 3 families of ribs and geometric
parameters with a unit lattice as shown in the figure 2.
Two load cases have been considered: uniaxial
compression and radial compression. The results
shown are for a model that ignores the impact of
boundary effects on the general state of stress. The
obtained results are compared to the solution of the
same problem modeled using the Finite Element
Method (FEM) package ANSYS.

The responses for the lattice structures has been plotted
for the longitudinal and radial transverse deformations
with uniform load of 108 N/m applied at the top edge
of the cylinder with longitudinal and transverse forces
separately to study the effect of compressive load with
varying directions at top of structure, i.e. as for a tower.

Radius of shell (R) : Varying from 2.5 m to 20 m

Length of shell (L) : Varying from 5 m to 20 m

Grid length (a) : 500 mm, 1000 mm

Cross-section of the ribs: 200 mm * 200 mm

ANSYS: Element type - BEAM188, Mesh element
size - 0.1 m
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Boundary conditions:

Fixed end at the coordinate z = 0 m

Longitudinal force (N1) = 108 N/m at z = L m

Transverse force (Q1) = 108 N/m at z = L m

N1 and Q1 applied separately.

Material properties: Steel, E = 2*1011 N/m2, Isotropic
property.

Figure 4: Deformation, u due to N1 R5m L5m
a500mm for n = 4 family

Figure 5: Deformation, w due to N1 R5m L5m
a500mm for n = 4 family

Figure 6: Deformation, u due to Q1 R5m L5m
a500mm for n = 4 family

Figure 7: Deformation, w due to Q1 R5m L5m
a500mm for n = 4 family

The graphs in figures 4, 5, 6, 7 clearly show that the
response of the structure corresponding to the
longitudinal and transverse deformations obtained
using analytical solution through homogenized
approach done in MATLAB and the FEM software
ANSYS is within close proximity of one another, with
the exception of the regions situated in the immediate
vicinity to the loaded edge, especially for the
transverse deformations.

The case of the lattice cylinder has been subjected to
N1 and Q1 with various geometry and lattice
configurations, with a case being shown of R5m, L5m
and a500mm for n = 4 family of ribs, and the results
show good correspondence for the lattice structure
excluding loaded boundary edge. Similarly, the
maximum deformation results have been generated
for R10m, L10m and a1000mm, which show that the
longitudinal and transverse deformations due to N1
and Q1 have been found to be four times the
corresponding deformations for R5m L5m a500mm
as can be seen from tables 1 and 2 , except higher

1822



Proceedings of 12th IOE Graduate Conference

Figure 3: Lattice Cylindrical Shell, n = 4 family of ribs with N1 loading

Deformation, m
due to N1

Error
due to Q1

Error
MATLAB ANSYS MATLAB ANSYS

u -0.0175 -0.01839 4.84895219 0.004585 0.004547 0.82672295

w 0.004585 0.004434 3.39383321 -0.22001 -0.15887
High due to

boundary effect

Table 1: Max. deformation for R5m L5m a500mm for n = 4 family

Deformation, m
due to N1

Error
due to Q1

Error
MATLAB ANSYS MATLAB ANSYS

u -0.07022 -0.07614 7.77487265 0.018495 0.021017 11.999745

w 0.018495 0.022679 18.4487252 -1.24457 -0.81815
High due to

boundary effect

Table 2: Max. deformation for R10m L10m a1000mm for n = 4 family

Deformation, m
due to N1 due to Q1

n=4 n=3 n=4 n=3
u -0.0175 -0.03068 0.004585 0.010324
w 0.004585 0.008329 -0.22001 -0.38023

Table 3: Max. deformation for R5m L5m a500mm for n = 4 and n = 3 family

Deformation, m
due to N1 due to Q1

n=4 n=3 n=4 n=3
u -0.07022 -0.12339 0.018495 0.041687
w 0.018495 0.041687 -1.24457 -2.15098

Table 4: Max. deformation for R10m L10m a1000mm for n = 4 and n = 3 family
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discrepancy is observed for the transverse
deformation ’w’ due to Q1 near the boundary region.

As can be seen from the tables 3 and 4, the
deformation results for R5m, L5m, a500mm and
R10m, L10m, a1000mm for n = 3 family of ribs, the
max. deformations show that ’u’ due to N1 and ’w’
due to Q1 are 1.75 times more than that for n = 4
family of ribs. And, max. deformations ’w’ due to N1
and ’u’ due to Q1 are 2.25 times the case for n = 4
family of ribs. This show that deformations for n = 3
family of ribs are almost twice than that for n = 4
family of ribs.

4. Conclusions

In this paper, the axisymmetric analysis of lattice shell
of revolution is done using the homogenized approach.
The static analysis is performed for the structure
loaded with uniaxial compression and transverse
radial compression. The numerical results obtained
for the lattice cylindrical shell with n = 4 and n = 3
family of ribs have been compared to those obtained
from the FEM package ANSYS. The homogenized

model predicts the deformations with high accuracy
(the discrepancy not exceeding 20% for most cases).
However, the high discrepancy generally results near
the regions subjected to loaded boundary edges. The
deformations for R, L, ’a’ can be scaled up to four
times the half dimensions R/2, L/2, ’a/2’, and helps in
shortening of analysis time. Deformations for n = 3
family of ribs are almost twice than that for n = 4
family of ribs.
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