
Proceedings of 12th IOE Graduate Conference
Peer Reviewed

ISSN: 2350-8914 (Online), 2350-8906 (Print)
Year: 2022 Month: October Volume: 12

Automated Log Parsing through Named Entity Recognition

Saloni Shikha a, Arun Kumar Timalsina b

a, b Department of Electronics and Computer Engineering, Pulchowk Campus, IOE, Tribhuvan University, Nepal
 a shikhasalonee@gmail.com, b t.arun@pcampus.edu.np

Abstract
Modern software-intensive systems generate millions of logs each day for troubleshooting purposes. These
devices log their activities and events in some form resulting in exponential growth in the number of
logs generated. These logs are in thousands of formats, some of which are structured while others are
not. Extracting information from the structured logs is simple and can be done accurately using classical
programming approaches. However, the remaining semi-structured logs are difficult to work with. Structured
logs refer to the logs following specific format such as json, xml, cef and so on. Semi-structured logs here
refers to the logs that follow some specific log template generated from the logging statement written by
the system developer which might not necessarily have keys demarcated in the log itself. An example of a
system whose logs are semi-structured is the Unix system. Unix logs come with common header formats with
thousands of variants in the log body format. While using classical programmatic approach, whenever a new
log format appears, extra effort has to be put to extract the information from the log which is a never-ending
process. This research work aims to solve this through a deep learning-based named entity recognition
algorithm. Name Entity Recognition, a modern Natural Language Processing (NLP) approach, is used to
create a model trained with large amount of known data points that helps to identify and extract meaningful
information from new logs of a variety of formats. The scope of this research work is to automate log parsing for
such semi-structured logs generated from Unix processes. This project has studied creation of a Bidirectional
Long Short-Term Memory(BLSTM) model to extract important values from these logs and assign them certain
field names. The model was able to achieve a F-measure of 89% on the test set.

Keywords
Log parser, Long short-term memory, Named entity recognition, Regex-based parsers

1. Introduction

With growth in the number and complexity of devices
in the world, the number of logs is increasing
exponentially. Logs are being generated in a wide
variety of formats which do not follow any particular
format and the task of parsing these logs
systematically and deriving useful meaning from
these has become increasingly difficult. The most
common and prevalent method of parsing of logs
currently being used is regex-based parsers. The
limitation of regex-based parsers is that regex-based
parsers are very specific in their format and thus the
parsers need to be created manually for each log
format and must be upgraded with each change in
format. Such parsers made for one type of log format
are useless for logs that are generated in another
format. Even a slight change in the format like during
version change or even during data transfer an extra

space character causes these kinds of parsers to fail.
This has been an increasing concern in the field of
security since log parsing is the first step before
performing any kind of log analytics.

At present the cybersecurity industry is facing a huge
expense of manpower in log analytics. Security
information and event management (SIEM)
applications require information extracted from the
logs as the first step before any other kind of log
analytics. Currently, most of the organisations that
work on log analytics or any product relating to log
analytics, for eg, SIEM industries, have employed
manual signature-based methods for extracting
information from the logs. This is not only
time-taking and costly but also requires constant
upgrading and support. A separate group of
manpower is needed for supporting these
never-ending modification in the log formats. Thus,

Pages: 1747 – 1753



Automated Log Parsing through Named Entity Recognition

the parsing of logs is a major challenge in the security
industry which needs to be automated.

2. Related Literature

A structured log may be in some structured format
such as xml, json, cef format where the key-value
pairs can be extracted from the log itself. Parsing of
such logs is not a complicated task that can be handled
using programmatic approaches. However, in case
of Unix logs, ssh logs, etc. where the fields of the
log follow some specified format, the semantics and
meaning of the fields may not be clear from the log
itself. This requires documentation of the log and
some parsing mechanism following the pattern stated
in the documentation. However, limited research has
been done in the field of automatically parsing semi-
structured logs.

2.1 Log Clustering and Pattern Recognition

Research works have been done and some tools have
been developed for this purpose since the early 2000s.
Some research works have been conducted to examine
viability of log analytics using deep learning [1]. The
history of automated log parsing begins with Simple
Logfile Clustering Tool (SLCT), which is one of the
earliest tools that was designed with the purpose of
finding clusters in the logfile where each cluster
corresponds to some pattern which is found to occur
frequently. Zhu et.al.[2] have performed
benchmarking analysis of several old log parsing tools
developed during research and performed a
comparative analysis of the tools. A brief summary of
the tools [3] has been shown in Fig 1.

Figure 1: Summary of Historical Log Parsing Tools

Likewise, Joshi et. al. [4] have used the method of log
clustering through locally sensitive signature where
the similarity between log messages have been
identified by parsing the messages followed by
logically analysing the signature bit stream that has
been associated with them. Log messages have been
clustered based on their percentage similarity with the

pattern signatures that have been stored in the
database. If the similarity percentage is within a
specified limit, the log is included in that cluster else a
new signature is created and stored in the database for
the pattern of this new log.

Drain [5] makes use of a fixed depth parse tree that
is capable of parsing logs in a streaming manner in a
timely fashion. Likewise, Logram [6] makes use of
n-gram dictionaries for log parsing with spark nodes
for scaling out efficiently.

2.2 Log Parsing as a Named Entity
Recognition Problem

The extraction of entity types from log can be related
to a Named Entity Recognition problem. For example,
in a sentence ”User abcd authenticated successfully”,
abcd is the name of user which is a variable, the log
format being ”User 〈 user〉 authenticated successfully.”
Determining that ”abcd” is the name of a user in this
log, ”authenticated” being the action taking place and
”successful” being the status is a key challenge.

In a Named Entity Recognition problem, the
relationship between adjacent words needs to be
considered and utilised. Since BLSTM provides a
proper representation of each field thereby catching
the context of the surrounding words, BLSTM can
learn the features and perform the task well.

Pokharel [7] has used a classifier model using both
Naı̈ve Bayes and Support Vector classifier and
performed the task of log parsing through named
entity recognition on Windows Security Event Logs.
Likewise, Chiu et. al. [8] have used Bi-directional
LSTM for Named Entity Recognition and have used
CNN for performing character embedding which is
then fed into the LSTM.

3. Methodology

3.1 System Architecture

A Bidirectional Long Short-Term Memory (BLSTM)
has been used for extracting the named entities from
the log messages. A Bidirectional LSTM is a
derivation of Recurrent Neural Networks (RNN)
which is useful for processing sequential data. Since
event log parsing involves sequences of log fields
such as timestamp followed by process name,
process-id, service name, etc., BLSTM can give
considerable results in this field. The reason for using

1748



Proceedings of 12th IOE Graduate Conference

BLSTM over LSTM is that BLSTM is based on both
context directions while LSTM does not consider both
directions. Named Entity Recognition models have
been found to give better results with char embedding
compared to when only word embedding is used.
Both word embedding and char embedding have been
calculated before feeding into the LSTM model. This
will later be tweaked and checked with various
modification to determine the best configuration.

Figure 2: Project Methodology

3.2 System Block Diagram

Figure 3: System Block Diagram

This shows the intended system block diagram of the
proposed system. The workings of the different stages
are explained in section 4.2.

3.3 Model Details

The model used is a Bidirectional LSTM model. The
model was trained for 30 epochs with early stopping
because 30 should be enough for the model to be
trained. The model uses hyperparameters as shown in
table 1.

Figure 4: Flow Chart of Model Training

Parameter Value
Number of epochs 30
Dropout 0.5
Batch size 20
Optimizer adam
Learning Rate 0.001
Learning Rate Decay 0.9

Table 1: Model Implementation Details

3.4 Log Data Source

The dataset used for modelling evaluation of the
project consists of semi-structured logs.
Semi-structured logs here refer to the logs which do
not follow specific format that is capable of explicitly
representing key-value pairs within itself. For
example, a JSON format log is structured since it
explicitly contains the values as well as the keys for
the values i.e. the description of what field the value
represents. The logs are limited to Unix logs for this
project. The dataset consists of Unix logs gathered
from open-source databases. A few log sources from
where the logs will be collected include:

i. Loghub:
Loghub, A Large Collection of System Log Datasets
towards Automated Log Analytics [9], is an open-
source dataset hosted in github which consists of 77GB
of rawlogs from different sources including Unix. The
logs are not sanitised, anonymized or modified in any
way. This contains Unix logs collected over a time
span of 263.9 days containing 25567 messages.

Selected logs are filtered from these based on the

1749



Automated Log Parsing through Named Entity Recognition

information they carry. This dataset also contains
plenty of logs having no useful information in them.
Likewise, logs that are repeated with only difference
in specific fields such as user or datetime have been
removed.

ii. Logpoint:
Unix logs have been collected from Logpoint. The
logs from Logpoint include logs from a wide variety
of Unix processes that is used in combination with the
logs from Loghub. These logs have been anonymized
in order to protect the data privacy.

3.5 Pre-processing

3.5.1 Tokenization

The raw data consists of multiple files containing log
entries. An input of one sentence is taken, the
sentence is split by space into smaller units i.e., words
or terms. Each of these terms now acts as token for
further processing. In this way, the log entries have
now been processed into a sequence of tokens.
However, these tokens fail to split the logs into single
entities at times. For example, in the following log,
the process and process id are separate entities that
have separate existence but are treated as one because
of the tokenization method used.
Feb 12 10:54:25 ftpd[27480]: lost connection to
192.168.5.250 [192.168.5.250]
Here, ftpd is the process and 27480 is the process id
when we drill down further but the entire ftpd[27480]
has been treated as process here. This will be properly
tokenized and processed in the future.

3.5.2 Word and Character Embedding

The tokens that have been generated from raw log
entries are now converted into a sequence of word
embeddings. GloVe[10] has been used as the
pretrained word embedding. GloVe has been used to
initialize the look-up dictionary required for word
embedding. GloVe has been used as the word
embedding since it uses Wikipedia data which is
representative enough to get the context between
words present in the message part of a log. The
vocabulary used in its training includes common
words, thus this is suitable to be used in log data as
well. Here, every word gets represented as a unique
embedding.

3.6 Evaluation Methodology for NER System

For the authenticity of Named Entity
Recognition(NER) systems, its thorough evaluation is
necessary. There are many prevalent classification
techniques and the evaluation system should be
chosen that is best for the technique. Performance of
NER systems are compared with the actual annotation
provided by linguists, in this project, the actual labels
added by human-written signatures or rules.
Precision (P) and recall (R) are the metrics that are
mostly used to measure the performance of
information extraction systems such as NER system.
While precision mostly deals with substitution and
insertion errors, recall is mostly about substitution and
deletion errors. Thus, a single performance metric that
can deal with all the three types of errors
simultaneously is desirable, which is the F-measure.
F-measure is the weighted combination of Precision
and Recall. In our case, the metrics are given by:

Precision=
Correct Responses

Correct + Incorrect +Missing Responses
(1)

Recall =
Number o f correct responses

Correct + Incorrect +Spurious Responses
(2)

F −measure =
2∗Precision∗Recall

Precision+Recall
(3)

Here, response refers to the result/labelling provided
by our NER system. If we consider the correct label
(tagged by human, in our case human-written
signature) to be the answer key,
Correct → Instances where Response = Answer key.
Incorrect → Instances where Response ̸= Answer
key.
Missing → Instances where Response is unlabelled
but Answer key is labelled.
Spurious → Instances where Response is labelled but
Answer key is unlabelled.

3.7 Tools and Technologies

Python, Numpy, Tensorflow, Nltk, Matplotlib, Jupyter
Notebook, Google Colab, SIEM Tool, Microsoft
Office, Google Docs

1750



Proceedings of 12th IOE Graduate Conference

4. Results and Discussion

4.1 Experimental Setup

The data format was text format. The log definition
reference for the logs was used as the standard
semantics for the log messages. The field-value
mapping was generated using the log definition and a
standard log was built using a SIEM tool which was
used to create the labelled data. The validation was
done against this standard labelled data which was
then used to calculate the performance metrics. The
outcome of the project model was compared with the
generated labelled data to validate the result and
calculate performance metrics.

Figure 5: Preprocessing steps for creation of training
and testing set

4.2 Creation of Training and Testing Dataset

This project concentrates on building a machine
learning model capable of predicting named entities
from input raw logs. However, the dataset consists of
log entries containing many different log formats.
Majority of the task is preparation of suitable data for
training the neural network model. Exploration,
preprocessing, and annotation of the dataset is
necessary to be fed into the model as input.
Regex-based signatures have been used to extract the
entity names from the data. The logs are passed
through these signatures which classify its meaningful
entities into its respective entity-name. In other words,
key-value pairs are generated from the log entries in
this step. The values which do not contain significant

information are simply tagged as O. The dataset is
splitted into 60%, 20% and 20% for training,
validation and testing sets respectively.

The fields and corresponding tags used for the fields
are in mentioned in detail in figure 6.

Figure 6: Performance Metrics of Named Entity
Recognition Output

4.3 Results and Discussion

Various evaluation metrics have been calculated.
Precision, recall and F1-score for each tag were
computed. Macro averages of all these three metrics
have also been computed for the model. The actual
distribution of the different tags in the test dataset is
shown in figure 7 along with the model prediction
statistics.

The model shows high precision and recall for the
header fields since they follow pre-defined format in
terms of their structure and position in the logs.
Header fields mostly include fields such as Timestamp
(including date, month, time of the day), host and

1751



Automated Log Parsing through Named Entity Recognition

Figure 7: Occurrence Frequency of Fields in Test
Data Set

process. However, the model is found to often miss
parsing of a few fields important from the perspective
of security such as the ‘authentication method’,
‘authentication type’. Likewise, since Command field
has a large variation in its value, the model seems to
be giving a lot of false positives for the field
Command i.e. CMD. As a result, the individual recall
for this field is extremely low.

The overall performance metrics of the model with all
fields included are shown in table 3:

Recall 88.28%
Precision 89.73%
F-measure 89.00%

Table 2: Overall Performance Metrics

The prediction of header fields is comparatively more
accurate compared to other fields since these fields are
relatively constant in the logs with a constant position
as well. Since the performance metrics are highly
affected by the correct prediction of the header fields,
another performance metrics with these fields excluded
have been calculated which is shown in table 3.

Recall 83.42%
Precision 85.78%
F-measure 84.59%

Table 3: Performance Metrics Excluding Header
Fields

The performance metrics for individual tags has been
plotted and compared in figure 8.

The variation of train and validation loss of the model
with epoch has been plotted in figure 9.

Advantage of the model over regex-based
signatures:

Figure 8: Tag-wise Comparison of Performance
Metrics

Figure 9: Variation of Train and Validation loss of the
Final Model

The model gives more flexibility over rule-based or
regex-based signatures in that when log samples
containing formats slightly varying from the logs
present in the training set, the model successfully
captures the fields from it. For example, regex-based
parsers fail to capture multi-word usernames when
they expect a single word user. If a regex-based parser
is designed to parse a log,
Feb 12 19:29:32 nssal-ps3 sshd[5713]: Failed
password for invalid user brenda from
208.87.243.236 port 49922 ssh2

the system might fail working on the log,
Feb 12 19:29:32 nssal-ps3 sshd[5713]: Failed
password for invalid user brenda jones from
208.87.243.236 port 49922 ssh2

because of an extra word in the username. However,
such types of inconsistencies are found to be overcome
through the model since it can adjust minor syntactical
changes that occur with different version of Unix logs
or with slight difference in the logging format.

1752



Proceedings of 12th IOE Graduate Conference

5. Conclusion

This research work has made use of deep learning for
named entity recognition in Unix raw logs to extract
useful information in the logs. The basic pipeline steps
required to process the raw logs has been explored
including signature generation for commonly occuring
patterns. Thus this research work showed that one
of the deep learning methods BLSTM can be used to
predict named entities from logs just like with natural
language leaving space for further research.

With these contributions, this project has shown high
hopes for Natural Language Processing approaches in
an automated system that could perform an automated
field extraction from Unix logs. Bringing these kinds
of implementation from concept to real
implementation in the cyber security industries will
need the cooperation of all stakeholders, including
researchers from academia and industry experts.
Nevertheless, a lot of improvement has to be made to
develop the automated technology worth being used
in the practical cyber-security industry since false
negatives can get critical security threats go unnoticed
leading to catastrophic consequences.

6. Future Enhancements

This work has made use of Natural Language
Processing for log parsing. A remarkable
enhancement in this work would be to have a system
that would make use of a hybrid approach, i.e. an
approach that makes use of both: field parsing
through Named Entity Recognition and log clustering
through some clustering algorithm. Log clustering
can group log messages into clusters thereby
providing large-scale analytics from logs whereas log
parsing through named-entity recognition or any other
algorithm provides fine grain details from the logs.

If an anomalous event, for example, an event
concerning multiple authentication failures from the
same user within a short time span takes place, a log
clustering system would detect the event as an outlier.
However, we would require a log parsing system to
find out which user’s account was trying to be
compromised. Thus, since the two systems are
complementary to each other, a hybrid approach
would be considered more complete. This can be one
of the future directions of the work.

Acknowledgments

The authors would like to extend their sincere thanks to
Logpoint for providing the logs along with a SIEM tool
that aided in creating training and testing set though
label generation.

References

[1] Casey Lorenzen, Rajeev Agrawal, and Jason
King. Determining viability of deep learning
on cybersecurity log analytics. In 2018 IEEE
International Conference on Big Data (Big Data),
pages 4806–4811. IEEE, 2018.

[2] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He,
Qi Xie, Zibin Zheng, and Michael R Lyu. Tools
and benchmarks for automated log parsing. In
2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pages 121–130. IEEE, 2019.

[3] Hossein Hamooni, Biplob Debnath, Jianwu Xu,
Hui Zhang, Guofei Jiang, and Abdullah Mueen.
Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International
on Conference on Information and Knowledge
Management, pages 1573–1582, 2016.

[4] Basanta Joshi, Umanga Bista, and Manoj Ghimire.
Intelligent clustering scheme for log data streams.
In International Conference on Intelligent Text
Processing and Computational Linguistics, pages
454–465. Springer, 2014.

[5] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R
Lyu. Drain: An online log parsing approach with fixed
depth tree. In 2017 IEEE international conference on
web services (ICWS), pages 33–40. IEEE, 2017.

[6] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang,
and Tse-Hsun Chen. Logram: Efficient log parsing
using n-gram dictionaries. IEEE Transactions on
Software Engineering, 2020.

[7] Prabhat Pokharel. Information extraction using
named entity recognition from log messages. Masters
thesis, 2018.

[8] Jason PC Chiu and Eric Nichols. Named
entity recognition with bidirectional lstm-cnns.
Transactions of the association for computational
linguistics, 4:357–370, 2016.

[9] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu.
Loghub: a large collection of system log datasets
towards automated log analytics. arXiv preprint
arXiv:2008.06448, 2020.

[10] Jeffrey Pennington, Richard Socher, and
Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014
conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

1753


	Introduction
	Related Literature
	Log Clustering and Pattern Recognition
	Log Parsing as a Named Entity Recognition Problem

	Methodology
	System Architecture
	System Block Diagram
	Model Details
	Log Data Source
	Pre-processing
	Tokenization
	Word and Character Embedding

	Evaluation Methodology for NER System
	Tools and Technologies

	Results and Discussion
	Experimental Setup
	Creation of Training and Testing Dataset
	Results and Discussion

	Conclusion
	Future Enhancements
	Acknowledgments
	References

