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Abstract

Keywords

The ability to assess the impact of a seismic event on buildings are very crucial for quick recovery and
emergency response planning. Several classical methods previously existed to assess such damaged
buildings take significant time and resources. This study investigates the effectiveness of using machine
learning algorithms in the vulnerability prediction of buildings. Three machine learning classifiers knn, decision
tree, and xgboost have been utilized in this research to predict the damage grade of the building using a
dataset from the Nepal earthquake that has several building’s specific characteristics like (e.g., age, number
of floor area, ground floor type, etc.). A portion of data from this dataset is used to evaluate the model on
unseen data and rest of the dataset is used to train and select the best-performing model using stratified 5 fold
validation methods. The investigation of this research illustrates that the xgboost can accurately predict the
damage grade with 74.4 % accuracy in the test dataset. Furthermore, this paper suggests that the accuracy
of the model can be increased even more provided that there are balanced and huge datasets.

Earthquake, Building Damage, Classification, Machine Learning

1. Introduction

Although the occurrence of earthquakes is less
frequent, they contribute significantly to physical and
social damage. Situational awareness is an important
part of the decision-making process for facility
owners, users, emergency responders, and local and
state officials. A lack of such situational awareness
can lead to a catastrophic societal response. Similarly,
there is a rapid increase in insurance companies in
global industries, and they play a critical role in
today’s economy. In Nepal as well, companies like
“Sagarmatha Insurance”, “Standard chartered” along
with others insure the house and the variables within
against disasters. But it is widely reported that there is
an enormous problem of fake claims (false positives)
So, predicting the earthquake damages is crucial not
only for immediate post-disaster recovery and
emergency response planning but also to decrease the
case of fake claims in property insurance.

Although a holistic view of the impact of earthquakes
on structures can be obtained from the
post-earthquake inspection process with the help of
volunteers by inspecting and tagging each building, it

is a time-consuming process and resource
intensive.With the rise in available data and computer
resources, there is a rapid evolution of the application
of machine learning over recent years with substantial
promise in various disciplines. With the power of
learning complex nonlinear functions, and treating
uncertainties, machine learning can help society to
facilitate decision-making in studying the seismic
effect on structural buildings as well. In this research,
we will be modeling the damages to the building from
the Gorkha Earthquake in April 2015 which killed
over 9000 people using state-of-the-art machine
learning techniques. The same model can be used in
the future for emergency response planning and quick
post-recovery provided the required features for the
model. The main aim of this research is to forecast the
damage to the individual house as an integer variable
between one and three given the information about its
location, secondary usage, and the materials used to
build the house where O represents low damage, 1
represents a medium account of damage and 2
represents almost complete destruction. To achieve
those, we would be using different machine learning
algorithms and comparing their results. The final
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proposed classifier will be able to predict the damage
provided by the basic aspect of the building with good
accuracy.

2. Related Works

The study of damage to buildings began a long time
ago. [1] presented a consistent method for earthquake
intensity classification based on the theory of
statistical pattern recognition and developed a
discriminative function for such identifications based
on the Bayesian criterion. [2] used the application of
fuzzy logic to earthquake damage predictions. These
classical methods for estimating damage require a lot
of information on building and earthquake ground
motion,
Although there is rapid progress in Al tools and their
application there are only a few research on their
application in rapid seismic assessment. Riedel et
al.[3] researched the application of support vector
machines for earthquake assessment at urban or
regional scales. Similarly, [4] worked on assessing the
seismic impact on the earthquake damage data
portfolio of 2014 South Napa earthquake using
machine learning techniques. They concluded the use
of Al provides a reliable estimate of the
earthquake-induced potential building damage and
indicated that the random forest algorithm provides
the best performance among the evaluated techniques
[5] used a Neural network and random forest for
predicting damage to the buildings caused by the
earthquake which is almost the earliest application of
machine learning in this type of application. [6] used
Generative Adversarial Networks to classify structural
damage caused by earthquakes. [7] tried four
algorithms to develop a damage prediction model
from 340 post-earthquake buildings in the Mexico
City and achieved more than 65 percent prediction
accuracy. Similarly, [8] used machine learning models
and aerial photographs to classify buildings in the
Kumamoto earthquake into four damage levels. [9]
used the XGBoost classifier to model the earthquake
damage by formulating the problem as multi class
classification models. [10] worked on deep learning
methods with focus on CNN to detect earthquake
damage in building with the optical data obtained
from sensing satellite. In this research, we will be
applying all these works in addition to other methods
on much larger datasets, trying to achieve higher
prediction accuracy.

which is costly and time-consuming.

3. Methodology

3.1 Dataset Descriptions

The dataset in this research was collected by
Kathmandu Living Labs and the Central Bureau of
Statistics to identify beneficiaries for assistance from
the government and was further processed by [11] . It
has 260601 rows, 39 features, and a target variable
that represents the damage grade where the building
id column is a unique and random identifier.
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Figure 1: Distribution of class on original dataset

Following features were extracted from the dataset in
this research study.

3.1.1 Numerical Features

* geo levell id, geolevel2 id, geolevel3 id
geographical region of buildings

* Count floors pre eq : number of floors of
building

* Age : age of building

* Area Percentage : normalized area of building

* Height Percentage : normalized height of
building

3.1.2 Categorical Features

* Land Surface Condition : surface condition of
land

* Foundation Type :
building

* Roof Type : roof used in the building

* Ground Floor Type : category of ground floor

¢ Other Floor Type : construction used in other
than ground floor

* Position : position of building

* Plan Configuration : building plan configuration

foundation used in the
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3.1.3 Boolean Features

* has superstructure adobe mud,

* has superstructure mud mortar stone,

* has superstructure stone flag,

* has superstructure cement mortar stone,
* has superstructure mud mortar brick,

* has superstructure cement mortar brick,
* has superstructure timber,

* has superstructure bamboo,

* has superstructure rc non engineered,

* has superstructure rc engineered,

* has superstructure other,

* legal ownership status,

* count families

* has secondary use

* has secondary use agriculture

* has secondary use hotel

* has secondary use rental

3.2 Research Design

This section describes each stage of the methodology
implemented in this research to build the classifiers.
Each of the stages is followed sequentially that starts
with data pre-processing and ending with the testing
of the model on unseen data. Figure 2 shows the
different stages of the methodology implemented to
build the ML classifiers. They are further elaborated
in the below sections.

P
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Figure 2: Flowchart of methodology followed in this
research

3.2.1 First Stage Data Preprocessing

Data preprocessing plays an important step in machine
learning before feeding it to the model for training,
validation, and testing purpose. Data preprocessing
steps taken in this research are as follows:

One hot encoding : Each of the categorical values
is converted into a numerical value before training a
model as most of the machine learning algorithms
cannot directly deal with them. In this research, each
level of categories was converted into a separate
feature in the dataset containing binary values (1 or 0).

Stratified sampling : Under this technique, the
entire dataset was divided into subgroups called strata,
and then apply normal random sampling techniques
within those created Strata. It helps to reduce the
sampling error when there is unbalanced data by
preserving the ratio of examples in each class they are
in the original dataset. Validation error of stratified
sampling is very close to the generalization error as
compared to just random sampling. This research
used this approach to split the dataset into train and
test sets, a training set with 80 percent data and testing
sets with 20 percent data.

Distribution of class on Test dataset

20652

Class of Damage grade

Figure 3: Distribution of class on test set after
stratified sampling

3.2.2 Second Stage Model Evaluation

Knn, decision tree and xgboost were selected as
candidate algorithm for this research. Knn and
decision tree were chosen known for their simplicity
and model interpretability where as an xgboost for
their capacity to handle imbalance data and data
parallelism during training. Three candidate
algorithms knn, decision tree, and xgboost models
were trained and fit using default parameters using the
stratified K fold validation methods. To examine the
efficiency of the model, metrics like F1, AUC and
Accuracy were evaluated on both validation sets and
test sets. Table 1 and figure 4 represent the different
evaluation metrics of the candidate’s model. The
observed result suggests that the xgboost performs
best on the validation datasets. The overall accuracy is
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0.7227,0.699 and 0.6498 for xgboost, knn, and
decision tree respectively.

Table 1: Evaluation metrics of each candidate
algorithm

Metric | Xgboost | Knn | Decision Tree
AUC 0.8174 | 0.7818 0.682
F1 0.7146 | 0.6958 0.6503
Prec. 0.723 0.6954 0.651
Recall | 0.6291 | 0.6282 0.6016
Accuracy | 0.7227 0.699 0.6498
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Figure 4: This chat shows evaluation metrics of each
candidate model trained on the training dataset

From figure 4 it is clear that xgboost outperforms all
other candidate models on all the evaluation metrics
AUC, F1, Precision, Recall, and Accuracy. The
decision tree performs the worst among all the model
evaluated on the validation sets.

KNeighborsClassifier Confusion Matrix
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Figure 5: Confusion matrix of knn on validation set
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Figure 6: Confusion matrix of a decision tree on
validation set

XGBClassifier Confusion Matrix
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Figure 7: Confusion matrix of xgboost on the
validation set

Figure 5, figure 6 and figure 7 shows the confusion
matrix of knn, decision tree and xgboost respectively.
From them, it can be clearly seen that all the candidate
model used in this research performs better on class
1 as compared to the other class and class 0 has the
worst performance.lt is understandable given that the
datasets are highly imbalanced where class 1 is the
majority class and class 0 is the minority class.
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Figure 8: Class report of knn on the validation set
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Figure 9: Class report of a decision tree on the
validation set
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Figure 10: Class report of xgboost on the validation
set
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Figure 11: Class report of xgboost on the validation
set after hyperparameter tuning

Figure 8, figure 9, and figure 10 show the class report
of knn, decision tree, and xgboost respectively. Each
of these class reports suggests that class 1 has the best
precision, recall, and f1 score as compared to class 0
and class 2. This behavior is repeated among all the
classifiers as class 1 has more training examples to
learn hidden pattern better as compared to the others.

3.2.3 Hypermeter Tuning and Prediction on Test
Data

Hyperparameters are tunable parameters and affect the
performance of the model. These values can dominate
the learning process of the classifier. Thus, to achieve
the maximal accuracy of the model, it is a must to
select the hyperparameter and optimize them. After
selecting xgboost as the best-performing classifier and
visualizing its performance, the final stage is to tune
its relevant hyperparameter using a random search
algorithm and compare the results before and after the
tuned hyperparameter. The study includes optimizing
the three most important xgboost hyperparameters.

1. Maximum depth : It indicates the maximum
number of nodes allowed in the classifier counting
from the root to the farthest leaf of a tree. A higher
value of maximum depth can learn more complex
relationships in the data but they allow a model to
learn particular sample-specific patterns which could
just have been noise.

2. Number of trees : The number of trees is one of
the critical hyperparameters for xgboost classifier.
Generally speaking, the number of trees can be
increased until the performance on unseen data
increases but the downside is that it may increase the
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learning time and may lead to overfitting.

3) Learning rate : This hyperparameter defines the
amount of correction or step size after each iteration
to correct the errors of the previous model. Generally,
lower learning rate makes our model robust to the
overfitting problem but increases the time complexity
even for marginal improvement.

Table 2: Hyperparameter value of xgboost after using
random search

Hyperparameter | Value

Maximum depth | 8

Number of tress | 300
Learning rate | 0.2

Table 3: Performance of tuned xgboost on the
validation set

Evaludation Metrics | Mean value of 5 fold
Accuracy 0.7397
AUC 0.8362
Recall 0.6617
Precision 0.7388
F1 0.7344

From table 3 and figure 11, it is clear that evaluation
metrics of xgboost have increased slightly after
hypermeter tuning. Besides that, tuned xgboost
handles the class imbalance problem better than the
untuned one when compared to figure 11 and figure
10.

Feature Importance Plot
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Figure 12: Feature importance plot of xgboost
classifier

Figure 12 depicts the most important feature of
datasets to classify the target variable which is
damage grade while classifying using the xgboost
classifier.
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Figure 13: Confusion matrix of tuned xgboost
classifier on the test set

Table 4: Class report of tuned xgboost on the test set

Class | Precision Recall F1 Support
0 0.691061 || 0.526169 | 0.597447 | 5025
1 0.746013 || 0.842372 | 0.791269 | 29652
2 0.753055 || 0.639475 | 0.691633 | 17444

Figure 13 and Table 4 show the performance of the
model on the test set. The performance of the model
on the test set nearly resembles its performance on
the validation set which suggests that the model is not
suffering from overfitting of the model. Table 4 clearly
shows that the model has high predictive accuracy on
class 1 and less predictive accuracy on class O which
is as expected given that class 1 is the majority class
and class 0 is the minority class. It also suggests that
the accuracy of the minority class can be increased
provided enough training examples to learn the hidden
pattern. The overall accuracy of the tuned model on
unseen data is found to be 74.4 %.

4. Conclusion

This study utilized the knn, decision tree, and xgboost
classifier for categorizing the building based on their
vulnerability during the seismic event using the input
dataset collected from the Nepal earthquake. This
study concludes that xgboost performed well as
compared to other classifiers in classifying the target
variable. Furthermore, the xgboost model
hyperparameter was configured expecting to increase
the efficiency of the model. The model after
hyperparameter tuning has shown slight improvement
as compared to the one with a default value. The
potential reasons behind not achieving substantial
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accuracy especially on the minority classes even after
tuning might be the imbalanced datasets, quality of
datasets, size of datasets, and high variability on the
datasets.

Machine learning classifier requires enough training
examples to learn the hidden pattern in the data. Since
the input datasets have a smaller number of training
examples in the minority class, we can expect that this
model would perform better provided enough training
examples. Furthermore, the study may get extended
using big and balanced datasets.
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