
Proceedings of 12th IOE Graduate Conference
Peer Reviewed

ISSN: 2350-8914 (Online), 2350-8906 (Print)
Year: 2022 Month: October Volume: 12

Fault Detection in Printed Circuit Boards using Faster RCNN And
YOLOv3
Bipin Thapa Magar a, Ram Krishna Maharjan b

a, b Department of Electronics & Computer Engineering, Pulchowk Campus, IOE, Tribhuvan University, Nepal
� a tbipin12@gmail.com, b rkmahajn@ioe.edu.np

Abstract
Technology has been an essential part in everyone’s daily life. With the development of new technologies,
people tend to forget the thing that powers it all i.e. hardware. New and more sophisticated techniques are
being developed regularly in the field of hardware design and development. With the step into automation,
most large companies tend to print their circuits using automated industries. Although, it increases efficiency,
quality assurance is also important. To test and verify the huge number of products, a deep learning object
detection system can be developed which can verify the PCB and segregate the faulty ones from the correct
ones. This paper focuses on development of object detection networks to detect the various faults in PCB,
localize the faults as well as classify them. For this, Faster RCNN network and YOLOv3 have been used
and their performance have been measured in terms of Mean Average Precision(mAP). For Faster RCNN,
Resnet101 and Resnet50 has been used as the backbone which had mAP of 0.9309 and 0.9578 respectively
whereas YOLOv3 performed even better with mAP of 0.991.

Keywords
Faulty PCB, Faster RCNN, YOLO, Object Detection

1. Introduction

With the growth of technology over the world, the race
for a better and more efficient hardware has been going
on for a long time now. Every hardware manufacturer
is opting for a better production environment for their
optimized designs. With the increase in the demand,
huge production is being done using automated tools
and machinery. These machines are prone to small
errors. Also, the storage and transport of the circuit
boards can be a source of faults and defects. The
testing and verification of each of the PCB can be both
expensive as well as extensive task to do manually. So,
a better approach is to find the faults using computer
vision by training a deep learning model.

Normally, human testers monitor the results of more
than 50 different tests. The process is both time
consuming and costly. The faults are mostly in solder
paste comprising of 50%-70% of the total faults [1].
Also, there are mainly two types of test: electrical and
non-electrical. The electrical test can find most of the
faults but still some may still hide from these tests [2].

In this paper, computer vision based deep learning
method has been proposed. Since a single PCB can

have multiple faults, the localization of the fault is
also necessary. For this, object detection algorithm
can be used. Faster RCNN based networks are slower
but provide customizability for detection of objects of
various sizes whereas starting from YOLOv3,
detection of small objects is supported. Since the
faults in PCB are relatively small, these two
algorithms have been selected for comparison. So,
this paper focuses on using object detection algorithm,
specifically Faster RCNN and YOLOv3 to find six
different faults in the PCB. This paper also compares
the performance of the two. Since it is an object
detection approach, mAP(mean Average Precision)
has been used as the performance measure as it is the
standard for object detection algorithms. Two
different backbone networks, Resnet101 and
Resnet50, have been used in Faster RCNN. So, the
three models are trained and their performance based
on mAP is compared.

2. Related Works

A lot of research has been done to detect the faults in
PCB. Many of them focus on developing image

Pages: 899 – 909

Fault Detection in Printed Circuit Boards using Faster RCNN And YOLOv3

processing systems whereas some also implement
machine learning and deep learning systems.

In 2019, Huang and P. Wei found a scarcity in datasets
from previous researches and published their own
dataset as open source. They also trained a model
based on CNN for the dataset. Their model exhibited
a maximum of 99.8% accuracy on their dataset. They
used 2 blocks of CNN with block each having 6 layers
composed of BN and ReLU function. The proposed
method classified the image but didn’t localize
individual faults in it[3].

Ding et al. published their network named “TDD-net:
a tiny defect detection network for printed circuit
boards” where they used the dataset from [3] and
augmented those data by adding Gaussian noise,
changing light, rotating image, flipping, random crop,
and shifting and formed 10,668 data with 21,664
faults. They also proposed a network for the defect
detection which they named as Tiny Defect Detection
Network that uses feature maps on multiple scales.
This network is slow as it is based on Faster RCNN
and faster implementations such as YOLO was not
explored[4].

Reza et al. published “Deep neural network–based
detection and verification of microelectronic images”
where they used deep neural network to verify the
electronic devices in a circuit. They used images from
such small devices to train the network and then
detect them in the actual circuit. The technique can be
translated to detect faults in the circuit as well[5].

Kim et al. took the data from the datasets provided by
Huang and P. Wei [3]. Then, they implemented a
Convolutional Autoencoder to train the model from
the dataset. The autoencoder generates a non
defective image which is then subtracted from the
original image to find if the input PCB has faults or
not. This technique is a different approach as it first
tries to fix the faults and then detect it. Although it is
a unique approach, it cannot classify the types of
faults but gives the locality and shape[6].

Lin et al. published “Feature Pyramid Networks for
Object Detection” where they developed a network
called Feature Pyramid Network (FPN). The network
combined the low-resolution, semantically strong
features with high-resolution, semantically weak
features to create feature pyramids which are
symantically strong at all levels[7].

Chaudhary et al. published “Automatic visual
inspection of printed circuitboard for defect detection

and classification” where they detect all 14 types of
defects as at fast as 2.528 seconds. The paper
proposes converting the initial image of PCB to
greyscale and then applying median and low pass
filtering with Gaussian Filter. They then segment the
tracks, holes and soldering pads which they then use
to find the difference with the non faulty image. They
filter out and eliminate the small areas and then detect
the final difference which they can then classify. The
classification is done by separating the type of image
formed after the above mentioned process based on an
algorithm mentioned in the paper[8].

Nayak et al. proposed a simple method to detect the
faults in PCB by using image subtraction method. At
first the image is taken which is then corrected for
lighting problems. It is then checked for tilt using
Hough Transform. The PCB border is then captured
and the image is compared with the template image.
This is relatively simple method but still the class of
fault is not correctly recognized in this method[9].

Guohua Liu and Haitao Wena published ”Printed
circuit board defect detection based on
MobileNet-Yolo-Fast” where they used the same
dataset as [4] and used YOLO for the fault detection.
They implemented Mobilenet-YOLO-fast for the fault
detection. For the anchors, they implemented
K-means clustering to define reasonable anchor
size[10].

Tan et al. published ”Comparison of YOLO v3, Faster
R-CNN, and SSD for Real-Time Pill Identification”
where they used the three object detection algorithms
on pill image dataset and compared the developed
models. They found that the Faster RCNN has a higher
mAP than YOLO v3 but in terms of speed, YOLO
performed almost 8 times faster. SSD was slower as
well as had less mAP than both the algorithms. This
comparison was done for Pill dataset and that of PCB
has not been done[11].

3. Proposed Methodology

The proposed methodology comprises of various
sections as shown in Figure 1.

3.1 Image Acquisition

For the image acquisition, we take the image of PCB
from camera. For this, we first mount the camera over
the PCB and supply sufficient lighting.

900

Proceedings of 12th IOE Graduate Conference

Figure 1: Overall Block Diagram

3.2 Image Preprocessing

The image is then sent through a series of steps
mentioned in Algorithm 1.

Algorithm 1 Pre-processing
1: Load Image to img
2: blurred← GaussianBlur(img, f ilter = 7x7)
3: threshold←AdaptiveT hreshold(blurred,max=

255, threshold = Gaussian,blocksize = 27,c =
6)

4: postBlur ← GaussianBlur(threshold, f ilter =
19x19)

5: erode← Erosion(postBlur, f ilter = 7x7)
6: Find contours from erode and save to contours
7: largest←max(contours,key= area) which is the

PCB
8: x,y,w,h← BoundingRectangle(largest)
9: Crop the original image to x,y,w,h to image

3.3 Faster RCNN

Faster RCNN algorithm[12] has been implemented in
the research to detect the various faults in the PCB.
With the improvement over RCNN[13] and Fast
RCNN[14], Faster RCNN provides a single stage
network as well as introduces Region Proposal
Network(RPN). Faster RCNN has the advantage of
higher mean Average Precision(mAP) with reduced
frames per second(FPS) as compare to other
algorithms such as You Only Look Once(YOLO) or
Single Shot Detectors(SSD)[11].

The input to the system is the augmented 600 x 600
image of the PCB. The backbone is first setup as
Resnet101 as the main Convolutional Network. We
then modify it to Resnet50 to compare the
performance. Also, multi-scale feature fusion strategy
is adopted which is discussed in detail in the later
section. The ROI pooling layer is followed by 2 fully
connected layers which then finally splits to
classification and Bounding box regressor. Similary,
the system architecture with Resnet50 as backbone is
shown in Figure 3.

3.3.1 Resnet as the backbone

Resnet101[15] has been used in this paper mentioned
in [4]. Here also, at first Resnet101 has been used as
the backbone Convolutional Network to extract
features. The Resnet101 used has been pretrained on
the ImageNet classification set. We then tune the
network using our own training set. The ResNets are
provided with five residual blocks {conv2 x, conv3 x,
conv4 x, conv5 x}. These residual blocks are selected
and their outputs are denoted as {C2, C3, C4, C5}
respectively. We use the strides of {4, 8, 16, 32}
pixels respectively for the residual blocks with respect
to input image.

3.3.2 Multilayer Fusion

By combining structurally strong high-resolution
feature maps and semantically strong low-resolution
feature maps, we can detect the faults which can be
classified as low-level vision task. So, the high level
and low level feature maps are contatenated to form
{P2, P3, P4, P5} from {C2, C3, C4, C5}[7].
First, we get the P5 layer using a convolutional layer
as shown below:

P5 =Conv2D(C5,out puts= 256,kernel = [1,1],

stride = 1) (1)

Then, P6 is calculated by max pooling P5 with the
following:

P6 =MaxPool2D(P5,kernel = [1,1],stride= 2) (2)

The remaining P2 to P4 is created by fusing two layers
as shown in the system architecture in Figure 2 and
Figure 3. For each of the Pi, the fusion is done as:

Pi = f usion(Ci,Pi+1) (3)

Using the above equation, we calculate P2 to P4. For
fusion, we have three steps. First, we upsample the
Pi+1 with the size of Ci as:

upsamplei = bilinear resize(Pi+1tosizeo fCi) (4)

Then, we reduce the output channels of the
convolutional layer to 256 using a 1x1 convolutional

901

Fault Detection in Printed Circuit Boards using Faster RCNN And YOLOv3

Figure 2: System Architecture with Resnet101 as backbone

Figure 3: System Architecture with Resnet50 as backbone

902

Proceedings of 12th IOE Graduate Conference

layer as:

reduced dimi =Conv2D(Ci,out puts = 256,

kernel = [1,1],stride = 1) (5)

We finally fuse this to get the new fused feature as:

Pi = f usion(Ci,Pi+1)=
1
2
(upsamplei+reduced dimi)

(6)

Each of these fused feature from P2 to P4 is finally
convoluted as follows:

Pi =Conv2D(Pi,out puts = 256,kernel = [3,3],

stride = 1) (7)

3.3.3 Anchors

The researchers of Tiny Defect Detection [4] used K
means clustering on the dataset to find the optimum
anchor sets as the defects in PCB is small relative to
the image and traditional anchor size is not suitable.
We are using the same anchor set which given in Table
1.

Table 1: Anchor Generation for each Layer

Layer Anchor Size Stride
P2 15x15 4
P3 25x25 8
P4 40x40 16
P5 60x60 32
P6 80x80 64
Scales 2, 3, 4
Ratios 2, 3, 4, 5

3.3.4 Postprocess the region proposals

This step has 4 major steps:

1. Decode Boxes: In this step, we take in the
respective anchor parameters and decode the
box to generate respective proposals.

2. Clip to image boundaries: In this step, we clip
the bounding boxes decoded to the actual image
boundaries.

3. Select top N: Since, there can be a large number
of region, we only take 12,000 top region for
Non-Max Suppression. For this, we select the
top 12,000 based on the highest class

probability calculated. We choose from a
maximum of 12,000 regions but if we have less
than that, we select from those. For testing, we
take a total of 6000 regions.

4. Non-Max Suppression: Now, we take the
region proposals and apply non-max
suppression. During training, we select 2000
from the 12,000 regions and during testing, we
select 1000 from the 6000 regions. For this, we
use the IoU threshold of 0.7.

3.3.5 Region of Interest(ROI) Pooling

In this step, we take each of the ROI from the proposed
regions and apply two steps. We first crop each of the
image of the feature map based on the ROI with the
size of 14x14. Then, We apply max pooling on the
cropped ROI as:

Pooled f eatures = MaxPool2D(Cropped,

kernel = [2,2],stride = 2) (8)

3.3.6 Fully Connected Layer and Prediction

Finally, we flatten the pooled features from the
previous section as:

f latten = Flatten(Pooled f eatures) (9)

Then, we add two fully connected layers as :

FC1 = f ully connected(f latten,out puts= 2048,

activation = so f tmax) (10)

FC2 = f ully connected(FC1,out puts = 2048,

activation = so f tmax) (11)

Finally, we take the output from FC2 and pass it to two
fully connected layers: one for class prediction and
another for bbox prediction.

class pred = f ully connected(FC2,out puts= 7,

activation = None) (12)

bbox pred = f ully connected(FC2,out puts= 28,

activation = None) (13)

903

Fault Detection in Printed Circuit Boards using Faster RCNN And YOLOv3

3.3.7 Loss Functions

For loss, the total loss is calculated by taking a
weighted sum of four different losses of
rpn loss bbox, rpn loss cls, fast rcnn loss bbox and
fast rcnn loss cls. The classification loss Lcls is
calculated using the following:

Lcls(pi, p∗i) =−log(p∗i pi+(1− p∗i)(1− pi)) (14)

Here, pi is predicted probability of anchor i being an
object and p∗i is the ground truth label i.e. p∗i = 1 for
positive label and 0 for negative label.
The regression loss is then given as:

Lreg(ti, t∗i) = R(ti, t∗i) (15)

Here, R represents Smooth L1 function. Also, ti is the
vector representing the 4 parameterized coordinates of
the predicted bounding box and t∗i is a ground truth
box associated with a positive anchor.
The various loss curves in Fast RCNN as well as RPN
are shown in Figure 4.

3.4 YOLO (You Only Look Once)

YOLOv3 has been implemented to detect the faults
in the PCB. This is because YOLO[16] and YOLOv2
(YOLO9000)[17] didnot perform well on small objects
and PCB faults are generally very small. For this, the
architecture of YOLOv3 is shown in Figure 5. Darknet-
53[18] has been followed by the detection network
which has three prediction layers which gives output
in 3 scales with stride of 8, 16 and 32. The details
about the anchors has been discussed later on this
chapter. Also, the input to the network has been set
to 416 by first cropping and converting all training
and test dataset to that size. It is done because YOLO
needs input of size divisible by 32[19].

3.4.1 Hyperparameters

The hyperparameters used during the training is given
in Table 2.

3.4.2 Anchors

YOLO uses K-means clustering to define anchors
based on the dataset. For 416x416 input, K-means
clustering was applied to get 9 anchors as shown in
Table 3.

3.4.3 Loss Functions

YOLO uses three different loss functions:
classification loss, localization loss and

Table 2: Training hyperparameters

Parameter Value
momentum 0.86714

weight decay 0.00058
epochs 300

batch size 8
imgsz 416

workers 8
optimizer SGD

Table 3: YOLOv3 anchors

Layer Anchor Size Stride

Predict1
12x12

815x16
22x13

Predict2
13x25

1620x19
32x16

Predict3
18x33

3225x25
33x31

confidence(objectness) loss. The classification loss at
each cell is given in Equation 16.

Lossclass =
S2

∑
i=0

1ob j
i ∗ ∑

cεclasses
(pi(c)− p̂i(c))2 (16)

where,
1ob j

i = 1 if object is in cell i, else 0,
p̂i(c) is conditional class probability for class c in cell
i,
The localization loss is error in the predicted box,
location and size as shown in Equation 17.

Lossloc = λcoord

S2

∑
i=0

B

∑
j=0

1ob j
i j [(xi− x̂i)

2 +(yi− ŷi)
2]

+λcoord

S2

∑
i=0

B

∑
j=0

1ob j
i j [(
√

wi−
√

ŵi)
2 +(

√
hi−

√
ĥi)

2]

(17)

where,
1ob j

i j = 1 if jth bbox in cell i is responsible for detecting
object, else 0,
λcoord increases weight for loss in bbox coordinates i,
The confidence loss measures the objectness of a box

904

Proceedings of 12th IOE Graduate Conference

Metrics Resnet50 Resnet101

Fast total Loss

RPN total Loss

Total Loss

Figure 4: Loss

Figure 5: YOLOv3 Architecture [20]

905

Fault Detection in Printed Circuit Boards using Faster RCNN And YOLOv3

Figure 6: YOLO training results

as shown in Equation 18.

Lossob j =
S2

∑
i=0

B

∑
j=0

1ob j
i j (Ci−Ĉi)

2 (18)

If no object is detected, the confidence loss is given in
Equation 19.

Lossob j = λnoob j

S2

∑
i=0

B

∑
j=0

1ob j
i j (Ci−Ĉi)

2 (19)

where,
1ob j

i j = 1 if jth bbox in cell i is responsible for detecting
object, else 0,
Ĉi is box confidence score f box j in cell i,
λnoob j = 1 if object is detected, else it weighs down
loss when detecting background
So, the total loss is the sum of the three given by
Equation 20.

Losstotal = λcoord

S2

∑
i=0

B

∑
j=0

1ob j
i j [(xi− x̂i)

2 +(yi− ŷi)
2]

+λcoord

S2

∑
i=0

B

∑
j=0

1ob j
i j [(
√

wi−
√

ŵi)
2 +(

√
hi−

√
ĥi)

2]

+
S2

∑
i=0

B

∑
j=0

1ob j
i j (Ci−Ĉi)

2 +λnoob j

S2

∑
i=0

B

∑
j=0

1ob j
i j (Ci−Ĉi)

2

+
S2

∑
i=0

1ob j
i ∗ ∑

cεclasses
(pi(c)− p̂i(c))2

(20)

The loss curves in training is shown in Figure 6.

4. Results and Analysis

The training accuracy curve for Resnet50 as well as
Resnet101 is shown in Figure 7. For Resnet101, the
Fast RCNN accuracy is upto 99.62% and RPN
accuracy is upto 99.97% at the end of the training. For
Resnet50, the Fast RCNN accuracy is upto 96.15%
and RPN accuracy is upto 99.72% at the end of the
training.

The Precision-Recall graph using the Resnet101
network is shown in Figure 8. The mean average
precision is 0.9309.

The Precision-Recall graph using the Resnet50
network is shown in Figure 9. The mean average
precision is 0.9578.

The Precision-Recall graph using the YOLOv3
network is shown in Figure 10. The mean average
precision is 0.991.

Although Faster RCNN based algorithms have a
relatively high mAP, YOLOv3 has even greater mAP
for the given PCB dataset. So, among the two
algorithms, YOLOv3 performed better than Faster
RCNN. The detailed AP is given in Table 4.

An example of an input of the test data is shown in
Figure 11. The output from the Resnet101 based Faster
RCNN is shown in Figure 12 whereas that of Resnet50
is shown in Figure 13. Also, the output from YOLOv3
is shown in Figure 14.

906

Proceedings of 12th IOE Graduate Conference

Metrics Resnet50 Resnet101

FastRCNN acc

RPN acc

Figure 7: Training Accuracy Curve

Figure 8: Precision vs Recall (Resnet101)

Figure 9: Precision vs Recall (Resnet50)

Figure 10: Precision vs Recall (YOLOv3)

Table 4: Average Precision

Network Resnet101 Resnet50 YOLOv3
Missing Hole .9908 .9869 .994
Mouse Bite .9534 .9640 .992
Open .8917 .9526 .994
Short .8951 .9269 .984
Spur .9278 .9528 .993
Spurious Copper .9271 .9639 .992
mAP .9309 .9578 .991

907

Fault Detection in Printed Circuit Boards using Faster RCNN And YOLOv3

Figure 11: Test Input PCB

Figure 12: Output (Resnet101)

Figure 13: Output (Resnet50)

Figure 14: Output (YOLOv3)

908

Proceedings of 12th IOE Graduate Conference

Acknowledgements

This research was supported by Department of
Electronics and Computer Engineering, Pulchowk
Campus, Tribhuvan University and all the respected
faculties under the department. A special thanks to Dr.
Surendra Shrestha, PHD, for his insightful
suggestions during the entirety of the research.

References

[1] S S Zakaria, A Amir, N Yaakob, and S Nazemi.
Automated detection of printed circuit boards
(PCB) defects by using machine learning in
electronic manufacturing: Current approaches.
IOP Conference Series: Materials Science and
Engineering, 767(1):012064, feb 2020.

[2] Madhav Moganti, Fikret Ercal, Cihan H. Dagli,
and Shou Tsunekawa. Automatic pcb inspection
algorithms: A survey. Computer Vision and Image
Understanding, 63(2):287–313, 1996.

[3] Weibo Huang and Peng Wei. A pcb dataset for
defects detection and classification. arXiv preprint
arXiv:1901.08204, 2019.

[4] Runwei Ding, Linhui Dai, Guangpeng Li, and Hong
Liu. Tdd-net: a tiny defect detection network
for printed circuit boards. CAAI Transactions on
Intelligence Technology, 4(2):110–116, 2019.

[5] Md Alimoor Reza, Zhenhua Chen, and David J
Crandall. Deep neural network–based detection and
verification of microelectronic images. Journal of
Hardware and Systems Security, 4(1):44–54, 2020.

[6] Jungsuk Kim, Jungbeom Ko, Hojong Choi, and
Hyunchul Kim. Printed circuit board defect
detection using deep learning via a skip-connected
convolutional autoencoder. Sensors, 21(15), 2021.

[7] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming
He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2117–2125,
2017.

[8] Vikas Chaudhary, Ishan R. Dave, and Kishor P. Upla.
Automatic visual inspection of printed circuit board

for defect detection and classification. pages 732–737,
2017.

[9] Jithendra P R Nayak, K Anitha, B D Parameshachari,
Reshma Banu, and P Rashmi. PCB fault detection
using image processing. IOP Conference Series:
Materials Science and Engineering, 225:012244, aug
2017.

[10] Guohua Liu and Haitao Wen. Printed circuit
board defect detection based on mobilenet-yolo-fast.
Journal of Electronic Imaging, 30(4):043004, 2021.

[11] Lu Tan, Tianran Huangfu, Liyao Wu, and Wenying
Chen. Comparison of yolo v3, faster r-cnn, and ssd
for real-time pill identification. 2021.

[12] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural
information processing systems, 28, 2015.

[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and
Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580–587, 2014.

[14] Ross Girshick and RCNN Fast. Microsoft research.
Fast r-cnn, 27, 2015.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick,
and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 779–788, 2016.

[17] Joseph Redmon and Ali Farhadi. Yolo9000:
better, faster, stronger. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 7263–7271, 2017.

[18] Joseph Redmon. Darknet: Open source neural
networks in c. http://pjreddie.com/
darknet/, 2013–2016.

[19] Joseph Redmon and Ali Farhadi. Yolov3:
An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[20] Haipeng Zhao, Yang Zhou, Long Zhang, Yangzhao
Peng, Xiaofei Hu, Haojie Peng, and Xinyue Cai.
Mixed yolov3-lite: A lightweight real-time object
detection method. Sensors, 20(7), 2020.

909

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

	Introduction
	Related Works
	Proposed Methodology
	Image Acquisition
	Image Preprocessing
	Faster RCNN
	Resnet as the backbone
	Multilayer Fusion
	Anchors
	Postprocess the region proposals
	Region of Interest(ROI) Pooling
	Fully Connected Layer and Prediction
	Loss Functions

	YOLO (You Only Look Once)
	Hyperparameters
	Anchors
	Loss Functions

	Results and Analysis
	Acknowledgements
	References

