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Abstract
Analysis of multiprocessor scheduling methods for real-time systems is a challenging domain of research due
to the need of strong theoretical and practical guarantees of correctness for the methods to be usable. For the
analytical work, a population of tasksystems have to be generated that accurately represents the parameters of
practical systems. Although efficient and reliable algorithms are available for identical multiprocessor platforms,
such is not the case for unrelated platforms. This work proposes a novel algorithm for generation of hard
real-time, implicit-deadline, sporadic and recurrent tasksystems with the context of scheduling them upon
unrelated multiprocessor platforms. The algorithm has been designed by generalizing the system parameters
of identical platforms to those of unrelated platforms and by simplifying the feasibility testing process, which
has made the algorithm efficient. Various system parameters relevant for the understanding of the scheduling
problem and the performance of the algorithm are then proposed. Finally, the algorithm is extensively analyzed
in terms of the system parameters. The analysis has shown that the proposed algorithm produces tasksystem
populations with feasibility ratio almost equal to 1 until a cutoff is reached. The population has also been shown
to exhibit growing overall utilization upon increasing problem complexity. Also, the theoretical analysis has
shown that the algorithm can be made to have linear time complexity in the average case for scale parameter
σu ≥ 3.0. These result verify that the algorithm is stable, reliable and efficient in generating task systems.
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1. Background

The need of this algorithm arose out of the
investigation of the multiprocessor scheduling
problem in the real-time domain. Scheduling of such
problems is a tricky prospect due their theoretically
difficult nature even for relatively simple task system
models. Specifically, most of these problems are at
least non-deterministic polynomial time hard
(NP-hard) in the strong sense: i.e. no polynomial or
pseudo-polynomial algorithms exist for solving these
problems. A detailed investigation of the problems
and their theoretical complexity classes has been
performed in [1]. To further complicate the situation,
hard real-time systems require strong theoretical
guarantee of schedulability: i.e. any schedule
proposed by any algorithm must not miss any
deadline even if the system is run for countably
infinite time steps. This requirement gives rise for the
need of optimal algorithms because optimal

algorithms guarentee finding a feasible schedule if it
exists (which will also be optimal). Fortunately,
optimal algorithms exist for the uni-processor case for
certain task system models. A detailed investigation
of the various uniprocessor scheduling algorithms as
well as various aspects of task system models can be
found in [2]. The optimality of the uniprocessor
scheduling algorithms simplifies the multiprocessor
scheduling problem (at least from a logical
standpoint): if we can find a feasible partitioning of
tasks upon the multiprocessor platform, then the
overall multiprocessor schedule thus induced is
guarenteed to be feasible.

Due to the tricky nature of the scheduling problem
and the strong theoretical guarentees required by hard
real-time systems, system designers often rely upon
(often simpler) models that have been thoroughly
analyzed and which provide the required guarentees
instead of more complicated ones which may provide
better representation of the system. In order to

Pages: 832 – 840



Proceedings of 12th IOE Graduate Conference

analyze real-time system models, an efficient task
system generation algorithm is required that can
represent the population of task systems that may
arise out of practical scenarios.

2. Related Work

Traditionally, task system generation algorithms have
been parts of greater bodies of research that mostly
focus on scheduling and schedulability analysis. The
UUnifast algorithm [3] was introduced in order to
generate uniprocessor task systems. The algorithm
was fast and it could generate tasksystems with a fixed
number of tasks and a fixed total utilization. The idea
was to uniformly sample points from a n − 1
dimensional hyperplane embedded in a n dimensional
space (each such point is a task system with n tasks)
where the per-task utilization is represented by the
projection vectors towards the coordinate axes. This
algorithm, however, could not be used for the
multiprocessor case as it would entail generating
points with total utilization (utotal > 1), which would
cause some task systems to have per-task utilizations
> 1 [4].

Other works [5] [6] [7] [8] have gone down a different
route: generate a task system of cardinality K +1 for
number of processors K and go on adding tasks until
the total utilization exceeds the overall utilization
exceeds K. In [4], it has been claimed that this
approach generates tasksystems with biased
utilization values.

An observation was made in [9] that the UUnifast
algorithm can be used in the multiprocessor setting by
simply discarding the task systems with per-task
utilization > 1. This modification is known as the
UUnifast-Discard algorithm. It has been noted in [4]
that this algorithm becomes infeasible for a range of
values of number of tasks and overall utilization. The
problem of bias has been addressed in [10] as the
RandFixedSum algorithm. It can generate task
systems with given value of number of tasks and
overall utilization.

Although the RandFixedSum algorithm is incredibly
efficient in generating task systems, it is suitable only
for identical multiprocessor platforms. Since
unrelated multiprocessor platforms frequently occur
in many practical systems [11] [12] [13] [14] analysis
of the systems requires an effective tasksystem
generation algorithm. This has been addressed in this
work. The algorithm proposed in this work is a direct

generalization of the incremental task system
generation algorithm for a constrained-deadline
system on identical multiprocessor platforms
discussed in [15] without the schedulability test.

3. System Model

The system under consideration is a hard real-time,
implicit-deadline system with sporadic and recurrent
tasks and an unrelated multiprocessor platform upon
which the tasks have to be scheduled.

A task system to be generated for the model is
represented as Γ = {t1, t2, ..., tn}. Such a task ti is
characterized by two parameters: the relative deadline
Di (which is equal to the lower bound on the
inter-arrival time, Ti) and a r-tuple of worst-case
execution times upon r processors:
Ci = (Ci1,Ci2, ...,Cir).

4. Task-set Generation for Identical
Multiprocessor Platform

The task system generation algorithm discussed in [15]
is outlined below:

1. Generate utilizations (Ui) from exponential
distribution with scale σu, regenerating tasks
that have utilizations > 1.

2. Generate task period from a uniform distribution
in [0,2000] and Worst-case execution time as:
Ci =Ui×Ti.

3. Generate deadline from a uniform distribution
in [Ci,Ti].

4. In this manner, initially generate a task set of
size r+1 for r processors.

5. Verify feasibility of the generated task system
according to the necessary condition of
feasibility proposed in [16]. If the task system
is deemed not feasible, goto step 1.

6. Again, verify feasibility of the task system
according to one of the sufficient tests of
feasibility proposed in [15]. If the task system
fails the test, goto step 1.

7. If the task set size (n) is as large as desired, stop.
Otherwise add a new task to the task set and
goto step 5.
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As discussed earlier, this algorithm had been designed
for constrained-deadline recurrent, sporadic task
system on identical multiprocessor platforms. In order
to generalize it for unrelated multiprocessor platforms,
the first step was to generate r worst-case execution
times in step 2 of the algorithm. The other difference
between the systems is that the target system is
implicit-deadline. Hence, step 3 can be omitted.
Furthermore, it was seen that the feasibility test
proposed in [16] is pseudo-polynomial in complexity
[15] and has not yet been generalized to unrelated
multiprocessor platforms. Hence, the test has been
omitted in this work. Also, the sufficient conditions
for schedulability have a dependency upon
global-EDF scheduling policy [15], so they too have
been omitted because they would restrict the use of
the algorithm for other scheduling scenarios. As will
be evident from the results, the algorithm generates
high proportion of feasible task systems, so the
removal of the schedulability tests is a justified
trade-off. Finally, having removed the schedulability
tests, the requirement of incremental generation of
task systems ceases to exist. Direct generation of task
system of desired size can be done. The proposed
algorithm with the modifications as discussed above is
discussed next.

5. Proposed Algorithm

Let r ∈ Z+ deonte the number of processors in the
multiprocessor platform, n ∈ Z+ denote the number of
tasks in the task system with r < n, Dmin, Dmax ∈ Z+

denote the minimum and maximum deadlines that are
generated by the algorithm with Dmin < Dmax, U(·, ·)
denote the uniform distribution and Exp(·) denote the
exponential distribution with scale parameter σu. Then,
the algorithm proceeds as described in algorithm 1.
Since there are novel aspects to the algorithm, both
theoretical and practical aspects of the algorithm have
been analyzed in the following discussion.

Theorem 1. Algorithm 1 halts with probability 1.

Proof. Let q(k)i j = P(Ui j > 1) be the probability that
the jth entry in the WCET array is > 1 in the kth run
of the while loop for a fixed value of i. Also, let
p(k)i j = 1−q(k)i j . Then, we have:

q(k)i j = P(Ui j > 1) =
∫

∞

x=1
σue−σuxdx = e−σu

and p(k)i j = 1−q(k)i j = 1− e−σu .

Algorithm 1 Generation of Task-sets for Unrelated
Multiprocessor Platforms

procedure GENERATETASKSET(σu,n,m,Tmin,Tmax)
for i← 1 to n do

Ui← [2,2...]r
Ci← [0,0...]r
Di ∼U(Dmin,Dmax)
Di← ⌊Di⌋
while ∃Ui j > 1 do

Ui j ∼ Exp(σu)
Ci j← ⌊Ui j×Di⌋

end while
end for
Γ←{(Ci,Di) | i ∈ {1,2, ..n}}
return Γ

end procedure

Let p(k)i be the probability that ∀ jUi j ≤ 1 for the given
i in the kth run of the while loop. Then,

p(k)i =
r

∏
j=1

p(k)i j =
r

∏
j=1

(1− e−σu) = (1− e−σu)r

Let X be a random variable that represents the number
of while loops that have to be run when the condition
∀ jUi j ≤ 1 is encountered for the first time for a
particular i. Then, X is distributed according to the
geometric distribution. Hence,

P(X = k) =
(

1− p(k)i

)k−1
p(k)i

=
(
1−

(
1− e−σu

)r)k−1 (
1− e−σu

)r

and

P(X ≤ k) = 1−
(

1− p(k)i

)k
= 1−

(
1− (1− e−σu)r)k

Let P(H) be the probability that the algorithm halts.
We have,

P(H) = lim
k→∞

P(X ≤ k) = lim
k→∞

1−
(
1− (1− e−σu)r)k

We have, 0≤ (1− e−σu)≤ 1 (since it is a probability)

or, 0≤ (1− e−σu)r ≤ 1, (r > 0)

or, 0≥−(1− e−σu)r ≥−1, (r > 0)

or, 0≤ 1− (1− e−σu)r ≤ 1, (r > 0)

or, 0≤ (1− (1− e−σu)r)k ≤ 1, (r,k > 0).

Thus, limk→∞ (1− (1− e−σu)r)
k
= 0 and hence:

P(H) = lim
k→∞

1−
(
1− (1− e−σu)r)k

= 1
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Theorem 2. Algorithm 1 has an average runtime of
O
(

nr
(1−e−σu )r

)
.

Proof. We have, the expected value of the geometric
random variable X as E[X ] = 1

p(k)i

= 1
(1−e−σu )r . This is

the expected number of steps for which the while loop
has to be run. Since each test of the while loop takes
an average of r

2 steps (linear search) and the outer loop
has to be run for n steps (1 for each task), the average
runtime of algorithm 1 is O

(
nr

(1−e−σu )r

)
.

Corollary 2.1. Algorithm 1 has an average runtime
linear in r at the limit σu→ ∞.

Proof. We have, limσu→∞
nr

(1−e−σu )r =
nr

(1−0)r = nr

It has to be noted that even at moderate values of σu

(≥ 3.0), the function r
(1−e−σu )r is almost linear. So, a

very fast average performance (linear in the problem
size nr) can be expected from the algorithm.

6. Partitioned-EDF Schedulability Test

In order to analyse the algorithm’s performance in
practical scenarios, it is necessary to determine the
effect of the various system parameters on the
population of task systems generated. For this
purpose, the partitioned earliest-deadline-first (EDF)
[2] scheduling policy is used as a test for
schedulability. The specifics are discussed next.

The partitioned EDF scheduling problem can be
formulated as an integer linear program (ILP) [1].
Consider the set of decision variables xi j with the
interpretation that:

xi j =

{
1 if task τi is assigned to processor p j

0 otherwise
(1)

Then, the problem can be formulated as:

minimize
n

∑
i=1

m

∑
j=1

xi j ·
Ci j

Di
subject to (2)

m

∑
j=1

xi j ≥ 1 ∀ i ∈ {1,2, ...,n} and (3)

n

∑
i=1

xi j ·
Ci j

Di
≤ 1 ∀ j ∈ {1,2, ...,m} (4)

Figure 1: Problem complexity vs feasibility ratio at
various values of problem size, σu = 1.0, dr = 50

Figure 2: Problem complexity vs feasibility ratio at
various values of problem size, σu = 2.0, dr = 100

In the above problem, the objective penalizes the
overall utilization whereas the first set of constraints
ensures that every task is assigned to at least one
processor and the second set of constraints ensures
that the per-processor utilization does not exceed 1.

Since the domain of the decision variables is {0,1}
the optimization problem is a special case of the
Integer Linear Program and is well known to be
NP-hard [17]. The NP-hard nature of the problem
prevents exact evaluation of the optimal solutions.
However, for feasibility testing, fast metaheuristic
algorithms are available which can efficiently find
feasible solutions (even though the solutions may not
be optimal). For the purpose of this work, Google’s
branch-and-bound metaheuristic algorithm [18] [19]
has been used for partitioning.

After having obtained the partitions, testing for

835



Task System Generation for Hard-real Time Scheduling on Unrelated Multiprocessor Platforms

Figure 3: Problem complexity vs feasibility ratio at
various values of problem size, σu = 3.0, dr = 150

Figure 4: Problem complexity vs feasibility ratio at
various values of σu, s = 1000, dr = 100

feasibility can be done in linear time (in problem size).
Since EDF is an optimal uniprocessor scheduling
algorithm [2], it guarentees schedulability given the
following condition is satisfied for all partitions Γp:

Γp ⊆ Γ is EDF-schedulable iff ∑
τi∈Γp

Ci

Di
≤ 1. (5)

7. Quantitative Analysis

7.1 System Parameters used for analysis

1. Problem size (s):

Problem size denotes the number of decision
variables involved in the ILP for partitioned-
EDF testing. It can be calculated as:

s = n× r (6)

Figure 5: Problem complexity vs feasibility ratio at
various values of σu, s = 3000, dr = 150

Figure 6: Problem complexity vs feasibility ratio at
various values of σu, s = 2000, dr = 50

where n denotes the number of tasks and r
denotes the number of processors in the task
system.

2. Feasibility ratio ( f r):

The feasbility ratio indicates the proportion of
the sample of tasksystems generated that have
been deemed feasible by the test. If in a sample
of size t, k tasksystems are feasible, the
feasibility ratio can be calculated as:

f r =
t
k

(7)

3. Problem Complexity (c):

Problem complexity intuitively represents the
relative hardness of the problem. From a bin-
packing analogy, it can be understood that if a
large number of items have to be packed into
relatively small number of bins, the problem
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Figure 7: Problem complexity vs feasibility ratio at
various values of deadline range, σu = 1.3, s = 2000

Figure 8: Problem complexity vs feasibility ratio at
various values of deadline range, σu = 2.0, s = 1000

becomes difficult. Problem complexity can be
calculated as:

c =
n
r

(8)

4. Deadline Range (dr):

Deadline range indicates the difference between
the maximum and minimum deadline values
used by the algorithm for task system generation.
It can be calculated as:

dr = max deadline−min deadline (9)

Intuitively, larger the deadline range, more is
the flexibility in selecting deadlines, so there is
a higher probability of generating a population
with higher feasibility ratio.

Figure 9: Problem complexity vs feasibility ratio at
various values of deadline range, σu = 3.0, s = 3000

Figure 10: Problem complexity vs overall utilization
at various values of problem size, σu = 1.0, dr = 50

7.2 Problem Complexity vs Feasibility Ratio
Analysis

Since problem complexity and feasibility ratio are two
of the most important system parameters, they have
been chosen as the primary variables for the
subsequent analysis. The system has been analyzed by
varying the parameters as discussed above and the
results thus obtained have been presented in figures 1
to 9.

7.2.1 At various values of problem size

The results (figures 1 to 3) clearly show that the
algorithm generates populations of tasksystems with
very high feasibility ratio until a cut-off is
encountered due to the entire problem space being
infeasible. The algorithm has also shown to be stable
for different values of the system parameters, thus can
be reliably used for task system generation. Finally, it
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Figure 11: Problem complexity vs overall utilization
at various values of problem size, σu = 2.0, dr = 100

Figure 12: Problem complexity vs overall utilization
at various values of problem size, σu = 3.0, dr = 150

has been observed that upon increasing the problem
size, the feasibility ratio increases for the same value
of problem complexity and the cutoff is delayed. This
points to a subtle nature of the problem that the
change in the number of processors (r) has a greater
impact on feasibility ratio than the change in number
of tasks (n).

7.2.2 At various values of σu

The results (figures 4 to 6) indicate that lowering the
value of the scale of the exponential distribution
improves the feasibility ratio. This result matches the
expected behavior since at lower values of σu, task
systems with higher utilization behavior are likely to
be generated which induce higher feasibility.

Figure 13: Problem complexity vs overall utilization
at various values of σu, s = 1000, dr = 50

Figure 14: Problem complexity vs overall utilization
at various values of σu, s = 2000, dr = 100

7.2.3 At various values of deadline range

The results (figures 7 to 9) indicate that increasing the
deadline range improves the feasibility ratio. This is
the expected behavior since the generator has a greater
degree of freedom in selecting deadlines when the
deadline range is larger and the likelihood of selecting
deadlines that induce feasible task systems increases.

7.3 Problem Complexity vs Overall Utilization
Analysis

Another important system parameter that needs to be
considered for the analysis of task system generation
algorithm is the overall utilization. The variation of
overall utilization with problem complexity at various
values of the system parameters have been discussed
next.
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Figure 15: Problem complexity vs overall utilization
at various values of σu, s = 3000, dr = 50

Figure 16: Problem complexity vs overall utilization
at various values of deadline range,
σu = 1.0, s = 1000

7.3.1 At Various Values of Problem Size

A general trend of increasing overall system
utilization has been observed upon increasing the
problem complexity. At the same complexity, with the
increase in problem size, the results (figures 10 to 12)
show an increase in overall utilization. With the
increase in problem size, the number of constraints in
the ILP of the partitioned EDF test increases, which
worsens (increases) the optimal value of the objective
(the overall utilization).

7.3.2 At various values of σu

With the increase in the scale of the exponential
distribution, the overall utilization has been observed
to increase in the results (figures 13 to 15) at the same
value of problem complexity. With the shrinking of
the feasible region (as was evident from the feasibility

Figure 17: Problem complexity vs overall utilization
at various values of deadline range,
σu = 2.0, s = 2000

Figure 18: Problem complexity vs overall utilization
at various values of deadline range,
σu = 3.0, s = 3000

ratio analysis), at higher values of σu, the optimal
utilization is worsened (increased).

7.3.3 At various values of deadline range

At the same value of problem complexity, the overall
utilization has been observed to increase in the results
(figures 16 to 18) upon increasing the deadline range.
The relation between deadline range and overall
utilization is implicit. The task system generation
algorithm generates WCETs as Ci j ← ⌊Ui j × Di⌋.
With higher value of deadline range, with the
minimum deadline held constant, higher values of Di

are generated which increase the values of Ci j . Task
systems with higher values of WCETs naturally have
a higher value of overall utilization.
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8. Conclusion

In this work, an algorithm for generation of
implicit-deadline, hard real-time, recurrent, sporadic
task systems on unrelated multiprocessor platforms
was proposed. Both theoretical and quantitative
analyses were performed. The quantitative analysis
has shown that the proposed algorithm produces
tasksystem populations with feasibility ratio almost
equal to 1 until a cutoff is reached. The population
has also been shown to exhibit growing overall
utilization upon increasing problem complexity.
These properties align with the theoretical expectation
of tasksystem population behavior. Hence, the
algorithm is stable and reliable for tasksystem
generation. Also, the theoretical analysis has shown
that the algorithm can be made to have linear time
complexity in the average case for scale parameter
σu ≥ 3.0. Hence, the algorithm is efficient in terms of
runtime for generating task systems.
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