Proceedings of 12" IOE Graduate Conference
Peer Reviewed

ISSN: 2350-8914 (Online), 2350-8906 (Print)

Year: 2022 Month: October Volume: 12

Efficient Word Embedding for Nepali

Bishal Debb Pande 2, Aman Shakya °

a.b Department of Electronics & Computer Engineering, Pulchowk Campus, IOE, Tribhuvan University, Nepal
¥ 2 075mscsk005.bishal@pcampus.edu.np, P aman.shakya@ioe.edu.np

Abstract

Keywords
NLP, Word embedding, word2vec, Fasttext, GLOVE

Word embedding are a vital part for most modern Natural Language Processing (NLP) task. It is however
difficult to identify if the given word embedding model works well or not. Especially with larger models, the
time taken to train such models are very large. When we add to this the time required to train the eventual
model for NLP task, a very large chunk of time can be spent on just training the different word embedding
models to identify which word embedding models works well. Due to this, selecting between different models
of word embedding can be very difficult. For this, intrinsic evaluation is used to evaluate the performance of
word embedding systems instead of directly using the model for eventual NLP task. But for Nepali, it is difficult
due to the lack of resources in Nepali Language. We show that using intrinsic evaluation based from similar
language like Hindi with small modifications, we can gain insight about the effectiveness of word embedding.
It can be justified based on the result for extrinsic evaluation where in the results are in agreement with the
results from intrinsic evaluation. Using this, we find out that among the 3 models considered, the fasttext
model performs the best when considering out of vocabulary words.

1. Introduction

Even though there has been significant improvement
in Natural Language Processing (NLP) over the years,
most of these works have been heavily focused on the
English language. Due to this, the current state of
other languages is far behind in terms of the progress
made. Especially for the Nepali language, there has
been very little work done in this field.

One of the major hindrances to the work on NLP for
the Nepali language has been the availability of a
comprehensive word corpus. With most modern
methods being heavily dependent on having a large
word corpus to be able to provide good performance
this introduced a bottleneck in the work that can be
done. Until recently, most of the information present
in the language had been in written form only, and to
use the prevailing information, a significant effort
needed to be made to convert them into a suitable

format that can be consumed by the NLP systems.

This in turn means that the focus for such work lies on
the conversion of the dataset to a consumable format
and the actual NLP tasks become secondary. But with
the expansion of social media and other digital

platforms over the years, the consumption of digital
textual data has increased significantly. This pattern
has replicated itself in the Nepali language as well.
This has meant that there is increased availability of
digitized textual content in Nepali as well. These data
can be used to expand the work on the Nepali
language.

Word embedding provides a representation of words
in vector space which can be utilized by other
downstream tasks. Most modern techniques for word
embedding are based upon the linguistic hypothesis:
“A word is characterized by the company it keeps.” [1].
It suggests that even though two words might have
different syntactic construction their similarity in
sense may be captured by the places where they occur
within the language. This also implies that instead of
needing to have complete information about the
construct and meaning of each word, one can get
insight into the language by having usage information
of words. These representations also have some
interesting properties present in them. Similar words
tend to lie close together each other in the vector
space and form clusters. One other interesting
property is shown between analogous words where

Pages: 621 — 627

Efficient Word Embedding for Nepali

simple vector operations can be used to get analogous
words.

This means that to be able to work on NLP tasks, it is
vital to have a good method for having word
embeddings. In the context of NLP in the Nepali
language as well, there is a lack of work done in word
embedding, and carrying out work on the creation of
effective word embedding systems for the Nepali
Language is vital. This can also provide a basis for
other works to be carried out in the language.

Our contribution in this paper includes an intrinsic
analysis of the word embedding model using the
similarity set and analysis of the three different
models.

2. Related Literature

Word embedding is the method by which the textual
data are converted into a format such that they can be
used by computer systems. Earlier approaches utilized
a sparse representation of words which had difficulty in
establishing the semantic relationship between words.
Over time, these methods have been replaced by neural
approaches which produce a dense representation of
words in vector space.

Word2Vec [2] is one of the leading approaches used
for word embedding. It consists of two approaches:
The Continuous Bag of Words (CBOW) and the skip-
gram. The two algorithms are very similar but have
slightly different approaches. The CBOW uses the
surrounding context words to predict the target word
while the skip-gram predicts the context words for the
given target word. Loss is calculated in terms of the
prediction made and optimization is carried out based
on it to provide a better representation. In [3] the
authors have tried to provide a deeper intuition into the
word2vec model with the mathematical modeling of
the model. This tries to explain why the model works
and how the underlying representation of the language
is captured by the word2vec model.

The Global Vectors for Word Representation (GloVe)
[4] is another popular approach used for word
embeddings. In it, the word embeddings are created
based on the co-occurrence matrix. The co-occurrence
matrix is created using the global statistics of text in
the given corpus. The advantage it provides over
word2vec is in terms of computational complexity,
speeding up the process significantly.

The Fasttext model proposed by [5] has a slightly

different approach for creating word embedding. It
may be considered a variation of the Word2Vec model.
In it, instead of using n words around the target word,
it uses the character n-gram and vector representation
is constructed from them. This allows for the
improvement in the performance for out of vocabulary
words that might share the same character n-grams as
previously trained words.

As word embeddings are extensively used in modern
NLP tasks, few of the recent works in the Nepali
language have also used word embedding techniques.
In [6], the author has released a 300-dimensional
word embedding model along with the corpus used for
it. Singh et al [7], have utilized the word2vec and
Fasttext model in the Nepali language for NER. They
have also analyzed the use of a few variations of these
word embeddings and how the performance is
affected by it. This work also highlights the
significance of word embedding and the effect they
have on the performance of the NLP system. Koirala
et al [8] have carried out an analysis of different
Nepali word embeddings using intrinsic and extrinsic
analysis. They use clustering based on relatedness and
sentiment for intrinsic analysis and news classification
for extrinsic analysis. They have also utilized
BERT-based models but due to the lower size and the
limited data, the performance is not that good.

Similar research has also been carried out in other
Asian languages with low resources. In [9] the authors
have created the word similarity dataset and carried
out the intrinsic evaluation on six different
low-resource Indian languages. In [10], the authors
have carried out similar research on the Sinhala
language and compared the effect of the use of
different word embedding and analyzed the
performance on both extrinsic and intrinsic tasks.

3. Methodology

Figure 1 below defines the overall processes that are
utilized.

Text Corpus
(Unlabeled Dataset)
v :
| Text Preprocessing | . | Labeled Dataset |
¥ : v
Train Word N Train
Embedding "l LSTM Model
¥ : ¥
| Intrinsic Evaluation | : | Extrinsic Evaluation |

Figure 1: Methodology

622

Proceedings of 12" IOE Graduate Conference

3.1 Data Collection

The dataset consists of a collection of multiple publicly
available datasets that have been created previously
for various tasks. The first publicly available dataset
utilized is the Nepali Monolingual dataset [11]. It
was produced in 2006 in the framework of the project
Bhasha Sansar. It consists of a general corpus which
consists of the collection of written text from a wide
range of sources such as internet websites, newspapers,
books publishers, and authors. This corpus had been
created to allow for corpus analysis that requires a
very large corpus. This corpus consists of 1,400,00
words. The other publicly available corpus utilized is
the Nepali English Parallel Corpus [12]. It consists of
the translation of 4325 sentences having over 100,000
words taken from the PENN Treebank corpus. The
corpus also has POS tagging applied to it with 43 POS
tags. Also, a small dataset consisting of Nepali words
along with NER tags is collected from [7].

In addition to these, the dataset also consists of data
scraped from various sources such as news sites and
Nepali Wikipedia.

3.2 Preprocessing

Preprocessing is one of the vital tasks that need to
be carried out. In the first step, the text is separated
into sentences. Since the dataset consists of text in
other languages as well, such text is removed based
on the Unicode range of Nepali words. Also, numbers,
punctuation, and other special characters are removed
in this step.

In addition to this, the use of stop word removal and
stemming of words are carried out. The predefined
set of Nepali stop words was taken for this and any
words in the set were removed from the sentences. For
stemming, the python package from [13] is used which
separates postfix based on dictionary look-up.

In each sentence, after initial pre-processing has been
carried out, an additional check is done to see the total
number of words present in the sentences. Sentences
that have 3 or fewer words are truncated.

3.3 Training Word Embedding

The creation of word embedding is carried out in an
unsupervised manner. The cleaned corpus is provided
from which a dense representation is created. The
models for word2vec, GloVe, and Fasttext are
considered. The implementation of these is readily

available and already existing packages in Python are
utilized for creating the word embeddings.

3.3.1 Hyper-parameter tuning

One of the challenges for training a word embedding
system is the selection of various parameters and
hyperparameters. A few of the major parameters to
consider are embedding dimension, window size, and
the number of epochs of training. All the models are
trained for a selected set of embedding dimensions. It
has been generally observed that larger embedding
sizes have better performance. This pattern however
cannot be observed indefinitely. After a certain
embedding size is reached, the performance slowly
starts to deteriorate. The major bottleneck for this is
the size and the variety of word corpus available. The
representation in the higher dimension starts to
become sparse in case enough words are not available.

The window size can also affect performance.
Window size refers to the number of neighbors of a
word that will be considered during the training. A
large value generally would mean that more context is
generated from the corpus, but the major limitation to
this is the larger computational power and the training
time required for training a mode with the increase in
window size. Each model is trained for a few different
values of window size to analyze the effect it has on
the performance.

The number of epochs for training is set differently
from one model to another. The consideration made
is in terms of the computational time required. The
number of epochs for each variation has been set such
that the training time required will be similar across
the models for a given embedding dimension. This is
done as computational time is also a major constraint
that needs to be considered.

3.4 Performance analysis

The performance evaluation for word embedding can
be broadly classified into two categories. They are
intrinsic and extrinsic evaluations.

Intrinsic evaluation evaluates the performance of the
word embedding on an intermediate task which is
different from any specific NLP task. These tasks may
or may not individually assure that performance
improvement in the given intermediate task
necessarily replicates itself with the eventual task
where the embedding is to be used. But these tasks
help provide a quick and efficient method for analysis

623

Efficient Word Embedding for Nepali

of performance. In addition, these analyses are not as
heavily dependent on large sets of labeled datasets. A
few of the popular methods are cluster examination,
analogous pair finding, and similarity measure for
target word pairs.

Extrinsic evaluation evaluates the performance of
word embedding based on the performance that they
provide to the NLP tasks such as classification,
Named Entity Recognition (NER), Part of Speech
(POS) tagging, and so on. These are the tasks where
one would eventually want to improve the
performance through the improvement in the
embedding.

Since the time required for extrinsic evaluation is
significantly higher, the evaluation based on intrinsic

methods is utilized for the initial model evaluation.

Among the various intrinsic methods, word similarity
measurement for a collection of pairs of words is
utilized as they provide a comprehensive
measurement of performance. For the final evaluation
of the model, extrinsic evaluation is utilized using
NER tagging as the reference NLP task.

3.5 Intrinsic Evaluation

As described before, word embeddings have the
property that similar words tend to lie close to each
other and form clusters. To evaluate if the given word
embedding has good performance or not, we can
evaluate the similarity score of the embedding of
words. A measure of performance can be obtained
from the results thus obtained. If words have a similar
meaning, they have high similarity scores and
unrelated words have low scores. It gives a general
idea that word embedding has been able to learn the
underlying representation of the language. For
example, the word vectors for Rupees, Dollars, and
Yen should lie close to each other as they all represent
the currency of different countries. Similarly, the
word vectors for student and cabbage will be far apart
from each other as they do not have any relatedness
between them.

The word representation given by the embedding
system is a dense vector and the similarity between
any two words can be obtained by using the cosine
similarity. The similarity score obtained by using the
cosine similarity method lies between O and 1. The
similarity score of 1 indicates that the vectors are
identical while the score of 0 means that there is no
similarity at all. The cosine similarity of two vectors

A and B can be calculated as:

A-B

1
AllB] M

similarity =

At the moment, an existing dataset for word similarity
does not exist for the Nepali language. Due to the
limitation of time, the creation of a custom dataset
in Nepali was not feasible. Since Hindi and Nepali
are based on Devanagari and have similar semantic
and syntactic rules, similarity datasets in [9] present
in Hindi is used with a simple translation. The Hindi
word similarity dataset consists of 235 pairs of words
consisting of 318 unique words. The dataset can be
used in the Nepali language pretty easily. Out of the
318 words around 200 words are words that also exist
in the Nepali language. Around 50 words are very
similar to the Nepali words and only require a minor
change to get the Nepali words The remaining words
can be used with simple translations. The image below
shows an example of these words.

Type Examples

Words present

in Both Hindi _

and Nepali 3T, Hebe, URNER, §1e

Requiring) !)

minor changes BR>BUIT, i >"gT, 3G > 3TRET
Simple .

translation HIRT, e, i, g

Figure 2: Words in similarity dataset

Each pair of words are assigned a similarity score in
the range of 0 to 10 with 0 meaning no similarity and
10 meaning very similar. One point to consider is that
though the antonyms have the opposite meaning to the
given word they are thought to be related and thus have
higher similarity scores than one would anticipate. It is
taken in the context that they are similar words utilized
to describe the same phenomenon.

To get a numeric measurement of the performance of
the embedding system, the mean absolute error can be
calculated between the similarity score present in the
dataset and the cosine similarity score obtained using
the word embedding vectors for the pair of words by
converting them in the same scale. Since the dataset is
built considering antonyms as also being high
similarity scores, the absolute value of the cosine
similarity is only taken.

624

Proceedings of 12" IOE Graduate Conference

3.6 Extrinsic evaluation

In the final step, extrinsic evaluation is utilized. For
extrinsic evaluation, a simple LSTM-based NER
tagger is utilized. This method is utilized in the last
step only due to the larger turnover time for a single
experiment. The different word embedding models for
the choice of hyperparameters that gave better results
before are utilized in this step. 5-fold cross-validation
is utilized to get a measure of the model in terms of
precision, recall, and f1 score.

Precision recall and f1-scores are calculated based on
the confusion matrix. In the confusion matrix, we
have the count of each of the case’s true positives
(TP), false positive (FP), false negative(FN), and true
negative (TN) based upon the actual class of a given
sample and the predicted class by the predictor.

In the case of NER, we have a case of multi-class
classification. The precision and recall are calculated
per class using the one vs all method i.e. for a target
class all other classes are considered as negatives and
based on it the calculation is made to get the per-field
accuracy.

The dataset for NER has three entities tagged in it:
Person, Organization, and location. The tagging has
been done in the 10 scheme. In this scheme, the text
within the entities is classified as the target entity, and
any other text is classified as other. It consists of a
total of 3600 sentences. The total count per class is
shown below.

Table 1: NER Dataset class split

Class \ Count ‘
PER 5059
ORG 3811
LOC 2313
Others - O 67904
Total entities w/ O | 79087

A simple LSTM-based model has been utilized for the
prediction of the entities. The LSTM model can keep
important context over a longer period than a
traditional recurrent neural network. The basic
principle of working LSTM can be seen in the figure
above. The implementation of the model has been
done in PyTorch. Different word embedding models
with appropriate hyperparameters have been used for
creating word embedding models. The difference
between the tests is only in terms of the word

embedding used. To avoid any random noise
providing inaccurate results, 5-fold cross-validation
has been carried out to get the result of the NER task
for a given embedding model.

4. Result

After initial runs trying to finalize the prepossessing,
it was observed that the stemming of words provided
better results than training without stemming. For
stemming, the suffix extraction was carried out. The
advantage of stemming was that the OOV tokens were
decreased. This was because the count of the root
word had increased which meant that the chance that
the word was truncated for not meeting the minimum
threshold was decreased. One thing to consider
though is that stemming needs to be also carried out
on the dataset for any subsequent NLP task which can
increase the complexity of the NLP task.

4.1 Word similarity

At first, the performance evaluation is carried out
using the translated wordsim pairs of words. The
mean absolute error is calculated between the word
similarity given by the word embeddings and the
predefined words. The table below shows the result in
the form of 1- error. Thus, larger values signify that
the model is learning better. This was used to
determine the various values of the hyperparameter
that needs to be provided. The model was trained
using the dataset which had been

In the first set of tests, a test on the embedding
dimension was carried out. For this, window sizes 50,
100, 150, 200, and 300 were used. These window
sizes were based on the popular window sizes used in
other research in this field. The results for the word
similarity task for different embedding sizes were as
follows:

Table 2: Comparison of models at different
embedding sizes with OOV words

Model || 50 | 100 | 150 | 200 | 300 |

CBOW || 65.14 | 64.45 | 64.02 | 63.78 | 63.37
Skipgram || 75.6 | 75.17 | 75.85 | 75.64 | 74.33
Fasttext || 81.79 | 81.68 | 82.63 | 82.62 | 82.37
GLOVE || 67.17 | 67.57 | 67.75 | 68.69 | 68.76

Most of the models we can see have got better results
with the increase in the embedding sizes. The

Efficient Word Embedding for Nepali

embedding size of around 150 to 200 seems to be
optimum for the corpus that has been used.

The next set of tests was carried out to know which
size of the window was giving the better result. For
this, a choice of window size was made the choices
were 2, 3,5, 10, and 15. The time taken for the training
with a larger window size was higher thus, the window
size of up to 15 was only considered. The table below
shows the result of the word similarity task at different
embedding sizes.

Table 3: Comparison of models at different window

sizes

Model || 2 | 3 [5 | 10 | 15 |
CBOW [64.27 [64.01 [64.08 | 65.17 | 65.76
Skipgram || 70.3 | 72.25 | 75.96 | 79.73 | 80.24
Fasttext || 77.48 | 80.39 | 81.57 [80.41 | 79.58
GLOVE | 62.95[65.88 | 69.15 | 71.51 [71.71

Here we can see that the result for the higher window
sizes was better most of the time. Only the Fasttext
model peaked at the window size of 5. For other
models, the performance on window sizes 10 and 15
was only slightly better but the time taken was
significantly higher. Based on this, for further
experimentation, a window size of 10 was chosen.

4.2 Named Entity Recognition

In the next step, extrinsic evaluation was carried out
using the NER task. The models of embedding size
200 with a window of 10 were utilized for the training
of word embedding for this task. For the NER task,
the choice of hyperparameters was made as per the
ones mentioned in [7]

The overall accuracy, precision, recall, and F1-score
of the model for different word embeddings were as
follows:

Table 4: Comparison of models for NER Task
Model H Acc ‘ Precision ‘ Recall ‘ F1 ‘

Fasttext | 94.59 83.47 65.60 | 73.46
CBOW | 94.22 83.40 60.82 | 70.34
Skipgram || 94.60 83.35 65.17 | 73.11
Glove 93.96 69.33 64.08 | 66.59

The output of the NER also gives us a similar
conclusion. We have observed that the performance of

the Fasttext and the Skip-gram models are almost
similar with the Fasttext model being fractionally
better.

5. Conclusion

Based on the experiments carried out, it is observed
that the Fasttext model performs better as compared
to other models. The Fasttext model utilizes the sub-
word embedding scheme which can be attributed to
the improved performance. Since in Nepali different
subwords have significant importance in the overall
meaning of the word it might have been a determining
factor. The skip-gram model also gives comparable
results to the Fasttext model. The Glove model was
not that good when compared to other models. It is
also observed that the window size of 10 gives good
results for Nepali and that the use of stemming also can
significantly improve the performance of the model.

In addition to this, it is also seen that the use of
datasets from related languages like Hindi with small
adjustments can also give a good indication of the
working of Nepali Word embedding.

6. Future Work

One of the major limitations of the models used in
the project was that they are not contextually aware.
Due to this, the same word embedding is given for
polysemy words even when they are used in a different
context. Use of models which take into consideration
the context might also help better the performance.
Another improvement that can be done in the model is
the use of better initialization of the word embedding
models.

Even though various experiments were carried out
there is still a limitation in Nepal in terms of the corpus
size when compared to English and other languages
with rich datasets. Due to this, there is still a large
scope for improving the results obtained. One of the
tasks that can be carried out is the use of a common
crawl dataset for Nepali.

References

[1] J. R. Firth. A synopsis of linguistic theory 1930-55.
Studies in Linguistic Analysis (special volume of the

Philological Society), 1952-59:1-32, 1957.

[2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations in
vector space, 2013.

626

Proceedings of 12" IOE Graduate Conference

(3]

(5]

(6]

Yoav Goldberg and Omer Levy. word2vec explained:
deriving mikolov et al.’s negative-sampling word-
embedding method. CoRR, abs/1402.3722, 2014.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. GloVe: Global vectors for word
representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532—1543,
Doha, Qatar, October 2014. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. Enriching word vectors with
subword information, 2016.

Rabindra Lamsal. 300-dimensional word embeddings
for nepali language, 2019.

O. M. Singh, A. Padia, and A. Joshi. Named entity
recognition for nepali language. In 2019 IEEE
5th International Conference on Collaboration and
Internet Computing (CIC), pages 184—-190, Dec 2019.

Pravesh Koirala and Nobal B. Niraula. NPVecl:
Word embeddings for Nepali - construction and
evaluation. In Proceedings of the 6th Workshop on
Representation Learning for NLP (RepL4NLP-2021),

[9]

(10]

(11]

[12]

[13]

pages 174—184, Online, August 2021. Association for
Computational Linguistics.

Syed Sarfaraz Akhtar, Arihant Gupta, Avijit Vajpayee,
Arjit Srivastava, and Manish Shrivastava. Word
similarity datasets for Indian languages: Annotation
and baseline systems. In Proceedings of the
11th Linguistic Annotation Workshop, pages 91—
94, Valencia, Spain, April 2017. Association for
Computational Linguistics.

Dimuthu Lakmal, Surangika Ranathunga, Saman
Peramuna, and Indu Herath. Word embedding
evaluation for Sinhala. In Proceedings of the 12th
Language Resources and Evaluation Conference,
pages 1874-1881, Marseille, France, May 2020.
European Language Resources Association.

Nepali monolingual written corpus. http://
catalog.elra.info.
Urdu-Nepali-English Parallel Corpus.

http://www.cle.org.pk/
software/ling_resources/
UrduNepaliEnglishParallelCorpus.
htm.

Nepali stemmer. https://github.com/
oyal63/nepali-stemmer.

627

http://catalog.elra.info
http://catalog.elra.info
http://www.cle.org.pk/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm
http://www.cle.org.pk/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm
http://www.cle.org.pk/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm
http://www.cle.org.pk/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm
https://github.com/oya163/nepali-stemmer
https://github.com/oya163/nepali-stemmer

	Introduction
	Related Literature
	Methodology
	Data Collection
	Preprocessing
	Training Word Embedding
	Hyper-parameter tuning

	Performance analysis
	Intrinsic Evaluation
	Extrinsic evaluation

	Result
	Word similarity
	Named Entity Recognition

	Conclusion
	Future Work
	References

