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Abstract
The study aims to evaluate and compare the performances of Support Vector Machine (SVM) and Random
Forest (RF) machine learning methods for landslide susceptibility mapping of Bhotekoshi rural municipality.
Spatial data prepared using remote sensing and GIS tools were applied to machine learning algorithms using
python code in Jupyter Notebook. Eleven landslide variables were generated which include slope, aspect,
elevation, distance from road, distance to river, plan curvature, profile curvature, Total Wetness Index (TWI),
Total Ruggedness Index (TRI), landcover and NDVI. The performance of the MLTs was evaluated, validated,
and compared using the area under the curve (AUC-ROC) method. AUC values for RF=90%and SVM=89%
was obtained. According to AUC value, random forest method was found to have the best performance for our
study area. Furthermore, landslide susceptibility map of Bhotekoshi rural municipality was prepared which
can be very helpful for planning and mitigation of landslide hazards.
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1. Introduction

Landslide, a recurrent hazard in hilly and
mountainous region of Nepal, is defined as outward
and downhill movement of mass of rock, earth,or
debris due to gravity [1]. It has resulted in large
number of casualties and economic loss in
mountainous region all over the world [2, 3, 4].
Global Climate Risk Index ranks Nepal fourth in
terms of climate risks [5] which highlights the
importance of identifying landslide prone areas for
effective disaster planning preparation and mitigation.

Landslide susceptibility is the chances of occurrence
of landslides in an area based on different slope
failure conditioning factors [6]. The spatial
distribution and characteristics of future landslides
can be predicted using landslide inventory and data of
the factors that affect landslide formation.
Susceptibility mapping is important as field survey
and dynamic monitoring is challenging in
undeveloped areas. Various methods have been
studied, from qualitative to quantitative methods , like

direct mapping [7], heuristic approach [8],
deterministic model [9], probabilistic method [10] and
machine learning models [11]. The direct mapping
and heuristic approach are highly subjective and
expert dependent. The deterministic method involve
physical model development which is very complex
and suitable for small area only. Machine learning
methods are very popular in recent years due to
development of algorithms and availability of data
from remote sensing and survey sources.

Random forest and support vector machine are quite
popular for binary classification model [12, 13] and
have been used for solving various sorts of problems,
but only a few number of these researches were for
landslide susceptibility for Nepal. Further, comparing
machine learning techniques for susceptibility
mapping is crucial as properties of each method is
unique and choosing the best method has significant
effect on real applications. The objective of the study
was to compare and evaluate RF and SVM methods
for landslide susceptibility mapping. Bhotekoshi rural
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municipality lies in one of the highly landslide
affected region of Nepal and is chosen as the study
area. The remote sensing data and GIS tools were
used for data generation and interpretation. The
findings of the study can be used to assess and lessen
the risks related to landslide hazards.

2. Study area

Bhotekoshi rural municipality 1, located in the
northeast of Sindhupalchowk District of Province 3,
has area of 273.62 km2 and altitude ranges from
1100m to 5000m above sea level. It has five wards
and is bordered to China on North and Jugal Rural
Municipality, Barabise Municipality and Dolakha
district on west, south and east respectively. There are
five hydropower projects in the area including
operational and under construction ones. The rural
municipality is famous tourist destination for
adventurous activities like rafting, bungee jump,
canoeing etc. There are 10 major landslides recorded
in the area in last two years (DRR portal) making it
highly vulnerable to landslide hazard.

Figure 1: Bhotekoshi rural municipality location map

3. Materials and Methods

3.1 Data Collection and preparation of
Landslide causative factors (LCFs)

Data were collected from the satellite images, aerial
photographs, research papers, government reports and
websites.1 shows the data and their sources used in
this study.The selection and preparation of the LCFs

database is a crucial step in achieving high accuracy
of the landslide susceptibility model in predicting
landslide risk areas. In this work, different landslide
conditioning factors are used such as slope, aspect,
elevation, plan curvature, profile curvature, TWI, TRI,
distance from roads, distance from river, normalized
difference vegetative index, landcover data are used.
QGIS was used to process DEM data to prepare Slope,
Aspect, Plan and profile curvatures, TRI, TWI and
elevation data. QGIS was used again to process
topographical data of road and river to create distance
to road and distance to river data.1 shows the different
landslide causative factors taken, their resolutions and
their sources. The landslide causative factors having

Table 1: Landslide causative factors

S.N. LCFs Resolution Source
1 Slope 12.5 x 12.5 DEM
2 Aspect 12.5 x 12.5 DEM
3 Elevation 12.5 x 12.5 DEM
4 Distance to river 12.5 x 12.5 GIS
5 Distance to road 12.5 x 12.5 GIS
6 NDVI 12.5 x 12.5 Sentinel-2
7 TWI 12.5 x 12.5 GIS
8 TRI 12.5 x 12.5 GIS
9 Profile curvature 12.5 x 12.5 GIS
10 Plan curvature 12.5 x 12.5 GIS
11 Landcover 30 x 30 ICIMOD

significant contribution on landslides have been
selected based on literature review. The slope gradient
has a significant impact on subsurface flow and soil
moisture concentration, both of which are directly
related to the incidence of landslides[14]. Aspect is
another important factor as wind directions,
precipitation patterns, sunshine influence,
discontinuity orientations, hydrological processes,
evapotranspiration, soil moisture concentration,
vegetation, and root development are all factors that
have direct and indirect effects on landslides which
can be impacted by Aspect[15]. The profile curvature
influences flow acceleration and slowdown, as well as
erosion and deposition. The plan curvature has an
impact on flow convergence and divergence. We can
better understand the flow through a surface if we take
both plan and profile curvature into account. The
saturation of the materials is affected by the slope’s
proximity to the drainage structure. Distance from
drainage was taken into account when modeling the
impact of runoff on landslide occurrence [16]. On
both the topography and the heel of the slope,
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Figure 2: Flow chart of methodology

constructed roads reduce the load. As a result,
superficial collapses occur along the roadside in both
uphill and downhill slopes, posing a serious road
hazard in [17]. Slopes that are left barren are more
prone to landslides and so landuse has been used as a
factor for susceptibility mapping [18]. Landslide
susceptibility is frequently assessed using elevation.
Different environmental factors, such as vegetation
kinds and rainfall, may be influenced by elevation
change. Secondary geomorphometric parameters such
as Topographic Wetness Index (TWI) and Terrain
Ruggedness Index (TRI) are used to define and
measure local relief. TWI and TRI offer new insights
into the morphology of landslides, particularly when
describing their depositional components [19].

3.2 Landslide Inventory

Satellite images from Google Earth, historical records
and database prepared by ICIMOD in 2019 were
integrated to prepare landslide inventory. 272
landslides were mapped of which smallest landslide
was of size 0.181 sq.km. The data was divided into
training and testing sets in the ratio 70% and 30%
[11]. The positive and negative values for landslides
were labelled as 1/0 respectively.

3.3 Modelling using machine learning
techniques

3.3.1 SVM

SVM is a supervised learning model which can
handle linearly non-separable and high-dimensional
data sets and it deals with binary classification model
[12] Consider a dataset (xi,yi)|xi εRn,yi ε−1,1m

i=1.
For the linear sepearable data, a separating hyperplane
is defined as:

yi(w×xi)+b ≥ 1−ξ (1)

where w is coefficient vector determines the orientation
of the hyper plane, b is intercept of hyperplane and ξi

is the positive slack variable. The optimal hyperplane
is obtained by solving the Lagrangian multipliers,

Minimize
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy j(xix j) (2)

3.3.2 RF

A random vector ik is generated and distributed to
all other trees while employing classification problem
in RF method. Bagging technique is applied to the
decision trees. Predictions for unseen samples x’ can
be created after training by summing the predictions
from all of the separate regression trees on x’:

f̂ =
1
B

B

∑
b=1

fb(x′) (3)
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Figure 3: Landslide Causative Factors (a) Altitude (b) Distance from river (c) Distance from road (d) Landcover
(e) NDVI (f) Plan Curvature (g) Profile Curvature (h) Slope aspect (i) Slope angle (j) TRI (k) TWI
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3.4 Model performance analysis

In this study, two machine learning models were
established using training and testing landslide
datasets and landslide susceptibility index for every
pixel was determined and visualized with the help of
GIS software. Prediction accuracy and performance
of the models was done quantitative and graphically
by the creation of confusion matrices and their
extracted statistics. ROC-AUC curve and RMSE score
were applied to evaluate the predictive performance of
the models. ROC curve is the curve of specificity vs
(1-specificity).

4. Results

4.1 Accuracy assessment and comparison

The model performance was evaluated by the
calculation of AUC and RMSE statistics. From the
AUC and RMSE method (Table 3, Figure 4), the
variation in model performance among MLTs was
considerably high. RF (AUC= 90%) and SVM
(AUC=89%) had the relatively higher accuracy . The
RMSE value also found to be 0.43 and 0.44 where
lower the RMSE value better is the result. In our
study, by both AUC method and RMSE method, RF
model was found to be best model for landslide
prediction. Also from gini index method for random
forest, elevation was found to have importance factor
score of 0.226 followed by NDVI = 0.222, TRI =
0.099, aspect = 0.072, slope = 0.071 and others as
shown in Figure 5.

Figure 4: AUC Curve of RF and SVM

4.2 Landslide susceptibility map

From the analysis, Random Forest was selected as the
best model for classification of landslide. Using that
model and LCFs parameters in raster data for the study
area, landslide susceptibility map is prepared. The
landslide susceptibility index were visualized in color
gradient with green indicating lower susceptibility and
red indicating higher landslide susceptibility.

(a) Landslide susceptibility map by Random
Forest Method

(b) Landslide susceptibility map by Support
Vector Machine Method

5. Discussion

The landslide susceptibility assessment of Bhotekoshi
rural municipality was done using remote sensing
data, GIS tools and machine learning algorithms. The
resulting two susceptibility maps exhibited a
consistent spatial distribution pattern and did not
differ significantly amongst the models. The area near
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Figure 5: Feature importance

to the Sunkoshi river has higher landslide
susceptibility. The construction of hydropower
projects and high traffic road along the area may have
contributed to the hazard susceptibility. The accuracy
of SVM and RF models are very close with SVM
having slightly higher accuracy in the comparison
done in Sichuan province [20]. In the comparison
study at Abha basin, Saudi Arabia, RF model was
found to have more accuracy [11] which was in
agreement with our result. From the feature analysis,
elevation was observed to be the most important
feature. This result is in accordance with other studies
in other areas with similar topography as our study
area [20, 21]. As elevation influences other features
such as vegetation, climate, etc, this might have
affected the result. Based on above analysis, it is
recommended that government and decision makers
should compare and analyse the multiple models for
ideal susceptibility mapping for practical applications.

6. Conclusions

The comparative study of machine learning models is
very useful to predict future landslides. In this study,
both RF and SVM methods showed higher accuracy
in classification and prediction of landslides with RF
having higher accuracy. So RF is best method for
Bhotekoshi rural municipality. This map showed that
the area near to the Sunkoshi river are highly
susceptible to landslides. Additionally, satellite
imagery data and GIS tools provided important data
for landslide susceptibility analysis. The study
provides the overall distribution of landslide
susceptibility in Bhotekoshi rural municipality which
the decision makers could use to implement
sustainable disaster mitigation and preparedness in

landslide hazard.
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