
Proceedings of 12th IOE Graduate Conference
Peer Reviewed

ISSN: 2350-8914 (Online), 2350-8906 (Print)
Year: 2022 Month: October Volume: 12

Application of Deep Learning to Account For Geometric and
Material Non-Linearity in Thin Circular Cylindrical Shell
Structures
Ashvin Oli a, Hikmat Raj Joshi b

a,b Department of Civil Engineering, Pulchowk Campus, IOE, Tribhuvan University, Nepal
 a 076msste005.ashvin@pcampus.edu.np , b hjoshi@ioe.edu.np,

Abstract
This paper has attempted to abstract out patterns hidden in the complicated non-linear equations governing
the behavior of shell structures subjected to large deformations and loads well beyond their elastic limit. 119
thin shell models with varying input parameters were run in ANSYS. The results’ validation was done in linear
range using MATLAB code as given by [1]. The stress and strain results obtained from ANSYS were then
normalized and fed to a neural network containing varying number of hidden layers and trained. 80% of data
was used to train the network and remaining 20% to train. The number of hidden layers and number of nodes
per layer was changed until the deviation between results given by ANSYS and predicted by neural net was
minimized. After training it was found the the network was capable of predicting the results within the margin
of 8% as given by ANSYS.
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1. Introduction

Deep learning is one of the methods of machine
learning, where artificial neural networks consisting
of multiple layers are used to extract high-level
features from large amount of raw data [2]. Various
algorithms in Deep Learning like
ANN,RNN,GAN,CNN have been quite useful in the
image processing world, and thus their usage in
structural world has also been popular in health
monitoring, crack detection, and damage assessment
[3]. The usage has not only been limited to image
processing but also in the design and analysis of
structures. Kang & Yoon, (1994) applied two layered
neural-network to aid simple truss design problems
[4]. Adeli & Yeh, (1989) used an artificial neural
network (ANN) to design steel beams [5]. Various
structural optimization problems have also been
solved using deep learning [6, 7]. Neural networks
have also been used to represent force-displacement
relationships in static structural analysis [8].

One of the major advantages of using a trained neural
network over running analysis is that the trained
network is capable of providing the ouput results
instanteneously. So given sufficient data set for

training the network, the results will be instantaneous,
and the engineer need not go through the hassle of
making the model and running it in any FEA tool like
ANSYS or SAP2000. This paper attempts to do the
same. By running 119 models in ANSYS, making
sure that they reach non linear range, and using the
results from ANSYS, the neural network is trained to
give output for a given set of inputs.

2. Literature Review

Vanluchene & Sun, (1990) demonstrated that Neural
Networks could be used in design and analysis of
structures. They also showed that neural network
could estimate numerically challenging answers fairly
instantly. [9]

For forecasting the residual shear strength of
Corroded Reinforced Concrete (CRC) beams at
various service durations, Fu et al devised a machine
learning (ML)-based technique. In order to
accomplish this, they gathered 158 shear tests of CRC
beams and used one of the most representative
ensemble machine learning algorithms, the gradient
boosting regression tree (GBRT), to create a
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predictive model for the shear strength. [10].

Huang & Burton (2019) investigated using machine
learning techniques to classify the in-plane failure
modes of infill frames using a data-driven
methodology. 114 infill frame specimens from an
experimental database were created. Nine structural
factors were used as input variables in the
implementation and evaluation of six machine
learning algorithms for failure-mode categorization.
[11].

Tahir & Mandal, (2017) analyzed the buckling load
for thin-walled circular cylindrical shells by using two
network models with eight and ten neurons used to
train, test and validate experimental data [12].

The process of verification in linear range while
solving non-linear problems has been motivated by
Burad & Angalekar. They used the finite element
based program ANSYS to undertake nonlinear
analyses of shells. Longitudinal span and radius were
chosen as the parameters. The boundary conditions
were free on the straight edge and stiff diaphragm on
the curved edge, and the loading was self weight,
wind load, and seismic load. To ensure that the results
obtained were genuine, the elastic zone results were
first compared to earlier results [13].

The solution in linear range for shell has been adopted
from Mandal & Joshi, [1]. They have developed
MATLAB code for the analytical solution of shell
problems with rigid diaphragm support in curved
edges and free and fixed support in straight edges.
Using their code the solution in linear range was
verified with the ANSYS model using vertical
deflection.

3. Objectives

1. Prediction of maximum Von Mises stress
(equivalent stress) and strain in linear and
non-linear ranges for a thin circular cylindrical
shell using a trained neural net.

2. Validation of the results with analytical solution
in linear range.

4. Methodology

119 open thin circular shells with varying parameters
as presented below were run in ANSYS. Large
deformations were allowed to caputre geometric non

linearity and stress-strain curve for aluminium
2023-T3 was provided to capture material non
linearity. The output from ANSYS was used to train a
neural network, and finally the neural network was
used to predict stresses. Validation was done in linear
range using analytical solution.

4.1 Selection of Input And Output Parameters
Table 1: Input parameters and their range

Geometry Open Circular Cylinder
Span (L) 100mm to 2560mm

Thickness (t) 1mm to 65.2mm
Half Central Angle 10° −34.6°

Radius (R) 100mm to 715mm
Load Type UDL 1Mpa to 25.6Mpa

The output parameters under consideration were
maximum equivalent stress and maximum equivalent
strain.

4.2 Configuration of neural network

The neural network was configured with various
number of hidden layers and nodes per layer until the
deviation between results predicted by ANSYS and
neural network was minimized. Other parameters of
the neural network was kept constant. Activation
function was Tanh. The network was simple feed
forward network with backpropagation algorithm.
The learning rate was 0.001, momentum was 0.9 and
number of iterations were 100000. All of the coding
was done in python using PyTorch module. The
number of hidden layers, iterations and learning rate
was decided based on the mean squared error loss and
maximum deviation in values(stress/strain) predicted
by ANSYS and Neural Network. The above
configuration gave a reasonable error with good
(within 8%) tolerance between predicted and actual
output. Much hit and trial was done.

4.2.1 Input And Output Nodes For neural network

Input layer of the network consisted of 5 nodes. Each
node for Radius, thickness, load, span and central
angle. The output neuron consisted of maximum
equivalent stress and maximum equivalent strain.

4.3 Material Input And Boundary Condition

Material Input The material used was Aluminium
2023-T3. Its modulus of elasticity(E) = 72450Mpa

476



Proceedings of 12th IOE Graduate Conference

and Poisson’s ratio = 0.33. As non linear isotropic
hardening property the following stress-strain data was
provided:

Figure 1: Stress-Strain Curve For Aluminum 2023-T3

Boundary Condition in Models Curved edges on
rigid diaphragm (rigid on its own plane only, i.e. v = 0,
w = 0, N1 = 0 and M1 = 0) and straight edges clamped
(i.e. u = 0, v = 0, w = 0 and ∂w

∂θ
= 0)

4.4 Analytical solution

The solution has been verified solving one of the
problems as linear. For verification in linear range, the
following equation has been solved in MATLAB by
[1].

(1+4c2)
∂ 8F
∂ξ 8 +4(1+ c2)

∂ 8F
∂ξ 6∂θ 2
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∂ξ 4∂θ 4 +4

∂ 8F
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∂ 8F
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∂ξ 2∂θ 4
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∂ 6F
∂θ 6 +(1−ν
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∂ 4F
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In above equation F is expressed as follows to satisfy
the boundary condition:

F =
∞

∑
m=1

fm(θ)sinλξ =
∞

∑
m=1

Aeαθ sinλmξ (2)

α is obtained by substituting equation 2 in equation 1.
The constants A are obtained by satisfying boundary
condition in the straight edges. Particular solution are

obtained by expressing u,v, and w as follows:

uo =
∞

∑
m=1

A0mcosθcosλmξ

vo =
∞

∑
m=1

B0msinθsinλmξ

wo =
∞

∑
m=1

C0mcosθsinλmξ

(3)

5. FEM solution in ANSYS

In ANSYS Shell181 element with 6DOF per node was
used to analyse the shell structure. The mesh size was
kept at 50mm for larger models and 5mm for smaller
ones and quadratic element order was used.

6. Results

6.1 Analytical solution And Validation

For validation open cylindrical shell with properties
given below was used. The validation was done based
on vertical deflection i.e w. Table shows data from
ANSYS and analytical solution:

Radius 715mm
Thickness 62.5mm

Half Central Angle 34.6o

Span 2560mm

Figure 2: Deflection
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Figure 3: Deflection along mid

Table 2: Analytical solution and ANSYS solution for
vetical deflection

Distance(mm) ANSYS(mm) Analytical
Solution(mm)

1120 4.167 4.165
1280 4.165 4.164
1440 4.167 4.165
1600 4.174 4.173
1760 4.195 4.197
1920 4.242 4.245
2080 4.277 4.275

All data are for center i.e θ = 0o.

7. Neural Network Outputs

The neural network was trained with varying number
of hidden layers to find the optimum number such that
the maximum deviation between predicted and
ANSYS values was minimized. The figures below
show how the values predicted provided by ANSYS
and neural net differ for different number of hidden
layers and different nodes per layer in the hidden
layers.

Notation: The notation of 5-10-2 means that there is
input layer with 5 nodes, then there is one hidden layer
with 10 nodes and final output layer with 2 nodes.

Figure 4: Stress Comparison for 5-20-2

Figure 5: Strain Comparison for 5-20-2

For 5-20-2, the mean squared error loss was found to
be 0.0228. The max stress deviation was 35.5% and
max strain deviation was 34.7%. The neural network
at this point is learning but not quite effectively. So we
increase the number of hidden layers.

Figure 6: Stress Comparison for 5-10-10-10-2
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Figure 7: Strain Comparison for 5-10-10-10-2

For 5-10-10-10-2, the mean squared error loss was
0.0126. The max deviation in maximum equivalent
stress was 14.1% and in maximum equivalent strain
was 14.5%. At this point the neural network seems to
be learning as inprovement in the prediction can be
observed.

Figure 8: Stress Comparison for 5-10-30-10-2

Figure 9: Strain Comparison for 5-10-30-10-2

For 5-10-30-10-2, the mean squared error loss was
0.0113. The maximum deviation in maximum
equivalent stress was 7.8% and in maximum strain
was 7.9%. We are still observing some improvement
in the learning process.

Figure 10: Stress Comparison for 5-10-50-10-2

Figure 11: Strain Comparison for 5-10-50-10-2

For 5-10-50-10-2, the mean squared error loss was
0.0105 , and the maximum deviation in maximum
equivalent stress was found to be 7.7% and for strain
was found to be 7.6%.
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Figure 12: Stress Comparison for
5-10-30-50-30-10-2

Figure 13: Strain Comparison for
5-10-30-50-30-10-2

For 5-10-30-50-30-10-2, the mean squared error was
0.007, and the maximum deviation for maximum
equivalent stress was found to be 16.7% and for strain
it was 16.8%. The data has been overfitted at this
point.

8. Discussion

In this paper,119 thin shell models with rigid
diaphragm support in curved edges and clamped in
straight edges were analysed in ANSYS turning on
large deflections to accomodate geometric
non-linearity and complete stress strain curve of
aluminium 2023-T3 was provided to account for
material non-linearity. To make sure that the results
were genuine, validation has been done in linear range
of the analysis or considering linear effect only. After
analysis the data from the models i.e. maximum
equivalent stress and maximum equivalent strain were

used to train the neural network. For training the
neural network data was split into 80% training set
and 20% testing set. Various configuration of neural
network were tried to get best possible output. Figures
5 to 11 display the variation in results provided by
ANSYS and neural network as the number of hidden
layers and nodes per layer was increased. What is
being expected here is a straight line y = x i.e. line
with slope of 1 and intercept of 0 and all points fall on
that line, which implies that the neural network
perfectly agrees with ANSYS, but since the feat
cannot be achieved practically, we want to see slope
close to 1 and intercept close to 0. Moving from 5, we
start with slope of 0.9796 and intercept of 2.4963.
The slope and intercept are quite close to what is
being expected but we can clearly see one of the
points is way off the line i.e. that particular point if
responsible for maximum deviation of 35.5% which is
way large deviation. So at this point we increase the
number of hidden layers. Most of the work performed
in this paper is based on hit and trial. So huge number
of trials have been performed to achieve the
mentioned results.

As we increase the nodes per layer and number of
hidden layers, we may see that the slope of 0.983 and
intercept of 2.92 has been achieved in figure 11. One
may observe that the intercept has increased but the
significant matter of concern is the maximum deviation
in the maximum equivalent stress and strain among all
the test data has to be minimized, which in this case is
only 7.7% and 7.6%. Increasing the number of hidden
layers again has caused overfitting and the network has
performed poorly as given in figure 13.

9. Conclusion

Following conclusions can be drawn from this paper.
The conclusions do meet the objectives set previously
in this paper.

1. For linear range, the analytical solution from
MATLAB agreed quite well with the model
from ANSYS. The deformations agreed within
1% as given by exact analytical tools.

2. Even a simple feed forward neural network
utilizing back propagation algorithm was able
to learn the patterns behind the complicated
equations governing non-linearity in shell
structures. From multiple hit and trail a
maximum deviation of 7.7% in maximum
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equivalent stress and 7.6% in equivalent strain
was achieved. This percentage can be reduced
by running larger samples in wider range of
values. This paper doesn’t claim to have
produced a working neural network model that
can predict stresses for any given input as the
number of sample was limited. It can however
predict stresses in the range it has been trained
in. But the main conclusion is that increasing
the model numbers and range of input data, any
reasonable input could be provided to obtain
the stress output. The result might not still be
used for engineering use, but it can sure give
reasonable estimate within seconds without
doing any analysis in FEM tools like ANSYS.
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