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Abstract
There has been a massive increase in the volume of data produced. New sorts of data are being created,
such as genomic data, VR data, 3D data, 360-degree autonomous driving data, and cloud data. In order
to create excellent compressors, a lot of human effort is put into examining the statistics of these new data
formats. Signal compression is a useful technique for lowering transmission expenses and extending the life
of the signal produced. To simplify signal compression an audio compression system based on a generative
adversarial network (GAN) is presented here. The audio signal is processed to convert into the frequency
domain and the audio signal spectrum is converted into Mel-spectrogram which is fed into an encoder that
produces the latent vector. The latent vector representing the compressed signal is supplied into a generator
network that has been trained to create high-quality signals that minimize the target of the objective function.
Non-uniformly quantized optimum latent vectors are discovered by back-propagation using the optimization
method iteratively to efficiently quantize the compressed signal. Subjective and objective evaluations including
PESQ and MUSHRA are used to evaluate the Proposed signal compression method’s performance compared
with BPGAN, CELP and Opus techniques.
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1. Introduction

The audio quality is continually increasing in today’s
data streams due to sophisticated devices used which
produce high-quality signals that demand higher
storage capacity and higher communication
bandwidth. It is impractical to store and communicate
this large volume of data generated in the
information-rich world, and therefore signal
compression is essential to manage those signals with
limited communication bandwidth and storage space,
which seems to be a substantial challenge to practical
application. For the purpose of creating effective
compressors, a lot of human effort is put into
evaluating the statistics of these new data formats. An
essential instrument for cutting communication
expenses and extending the life of the signal
generated is signal compression. A generative
adversarial network (GAN)-based audio compression
system was presented to aid in signal compression.

The amount of data created has dramatically increased
in the big data era. Genomics data, virtual reality data,
3D data, 360-degree autonomous driving data, and
cloud data are a few of the new types of data that are

being produced. A lot of human work is invested into
analyzing the statistics of these new data formats in
order to develop excellent compressors. To reduce the
network bandwidth utilization on the communication
channel shared by numerous edge devices, signal
compression is a task of critical importance.
Additionally, signal compression greatly lowers the
energy overhead associated with wireless data
transmission, which frequently accounts for the
majority of the energy used by power constrained IoT
devices. Inspired by the recent spectacular success of
generative adversarial networks (GAN) in numerous
applications, a GAN-based compression framework
known as backpropagated GAN was implemented
with a novel optimization method, where the
compressed signal is represented by a latent vector fed
into a generator network that has been trained to
produce realistic high-quality signals.The signal
compression finds applications in the bandwidth and
storage-constraint IoT devices and networks. Other
applications include signal broadcasting like TV,
Radio, and FM broadcasting along with the fixed and
mobile communication networks to reduce bandwidth
consumption.
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2. Literature Review

Due to the outstanding performance of GAN attained
in the various image processing application including
generation, synthesis, compression, enhancement, and
translation [1] it was introduced to the audio sector for
audio enhancement and compression which
consequences in an impressive result opening the field
of research on audio using GAN. Han et al on [2] first
proposed the non-uniform quantization in a Deep
neural network using the K-means algorithm for deep
weight compression, where the centroid of the cluster
was updated during the training phase that intensely
reduced the bit length of Deep Neural Network
Weight. To overcome unnecessary overhead for
compression Leng et al on [3] develop extreme image
compression for encoder-decoder style networks
inserting the differentiable quantization module.

The Deep Neural Network and autoencoder-based
image compression developed by Balle et al on [4]
and Rippel et al on [5] was a revolutionary
achievement in the field. Where [4] focuses on
MSSSIM multiscale structural similarity for the
assessment of quality image between original and
decompressed one and MSE optimizing. Theis et al
on [6] proposed a system that compresses the image
by applying the method using traditional quantization
and encoder for the reduction of bitrate. Recent
models adopt GAN-based encoder for image
compression such as Mentzer et al on [7], Agustsson
et al [8] achieves a high compression rate with
visually attractive image. Even though the details
provided by those decoders seem to distort the actual
image details. Recent model trends that were
deployed by Minnen et al on [9], Lee et al on [10],
and Cheng et al on [11] use context-adaptive
entropy-based image compression, these make the use
of additional bits allocated by hyperpriors for bit
consuming and complex context whereas for easily
inferred contexts, autoregressive models are used.

Initially, the traditional audio codecs like CELP [12],
totally open and royalty-free Opus [13], and
(AMRWB) Adaptive multi-rate wideband [14] are
generally used for simple data processing. This
processing is mainly based on the features that are
constructed for acceptable audio quality demand for a
higher bit rate greater than 16 kbps.

The DNN based approach employed by Kankanahalli
et al on [15] confirmed the possibility of end-to-end
training of the audio codec that shows similar

performance to that of traditional handcrafted
AMRWB codec at 9-24 kbps. Besides this Cernak et
al on [16] employing the deep spiking neural network
SNNs with synthesizers and paired phonological
analyzer shows 369 bps of bitrate audio codec
keeping only speaker identifier and content
information to achieve the lower bitrate of 369 bps.

Another milestone for the synthesis of audio with
higher quality is adopting the high-end audio codec
realization like Wavenet by Oord et al on [17] and
Wave RNN by Kalchbrenner on [18] using fine-tuned
deep neural network DNN-based vocoders. that are
considered as high-quality voice. Codecs such as [19],
learned Wavenet was used to generate audio as an
encoder that has the audio quality equivalent to that
produced from the AMRWB. Besides this, Van et al
on[20] proves that using (VQ-VAE) vector-quantized
variational autoencoder framework the Wavenet
vocoder is capable of generating quality audio by
providing the discrete latent representation of audio.
Also Garbacea et al on [21] contributes to reaching
the bitrate up to 1.6 kbps but the system used here
cannot address the low bitrate.

An important milestone was added by deploying the
GAN for audio processing where Pascual et al on [22]
use the SEGAN that established GAN can be used for
the audio processing and shows the improved result
on the audio processing task besides image
processing. Further Donahue et al on [23], Marafioti
et al on [24], and Engel et al on [25] claims that GAN
can be used for simple speech and instrumental audio
signal synthesis. However, generating an audio signal
of high quality with a random hidden input signal is
still a challenge. Hence for an audio compression
proposed by Liu et al on [26] introduce the BPGAN
that overcomes the limitations of previous work by
achieving considerably the same quality for a lower
bit rate by employing a combination of BPGAN along
with Huffman encoder.

3. Methodology

3.1 Theoretical Formulations

Due to the remarkable inspirational succession of
generative adversarial networks (GAN) on various
applications, utilizing the same compression
framework for audio compression seems interesting,
and it canbe assumed that this could perform better.
BPGAN which was originally proposed for the
unified signal compression on [26] could be extended
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for the focused audio signal compression with
advanced optimization technique and arithmetic
encoder implementation. The audio signal in
generative models is represented as a latent vector that
was compressed by using iterative backpropagation to
search for the optimal latent vector. The core idea is
to compress the signal in the generative GAN in the
form of a latent vector to search for the optimal latent
vector through the iterative backpropagation at
encoding to compress the target signal.

3.2 BPGAN Compression Model

The BPGAN compression framework may be used for
any kind of signal type as long as possible to train the
GAN model to produce a realistic type of output. The
input signal x is encoded as initialized of the
compressed signal z0 = E(x) at the initial stage after
that z which is the latent vector was optimized and
updated so as to minimize the objective function F()
through iteratively backpropagating from the
generator G(). Here, the objective was the similarity
measure of the input target signal x and reconstructed
signal G(z).

The optimal latent variable z is made discrete by
applying the quantization scheme Q(), at the time of
the continuous backpropagation process. The
compressed signal is entropy encoded using Huffman
encoder or arithmetic encoder before transmitting to
the receiver end for further size reduction. The
framework saves the generator parameter of the
transmitter or compressor side and shares it between
receiver and transmitter.

Considering the receiver side, for decoding the latent
signal G(ẑ), the same generator parameter which was
saved before was used which reconstructs the signal
back to nearly original format through post-processing.

BPGAN compression is different than another
GAN-based compression approach which relies only
on an encoder for signal compression in the sense that
the former performs the compression by iteratively
updating and searching latent vector on generator
input using the backpropagation that minimizes the
objective function from generator output. The encoder
here serves to accelerate the backpropagation by
reducing the number of iterations, which ultimately
improves the compression ratio and quality of the
signal.

Figure 1: BPGAN Generator Network for Audio
compression

3.3 System Block Diagram

The model for audio signal compression using GAN
consists of preprocessing, Encoding, latent vector
generation, Generator, loss function generation,
Backpropagation, and Entropy encoder in the
compression or transmitter block. The output of this
transmitter block is the entropy-coded latent vector.
Similarly, the decompression or receiver block
consists of the entropy decoder, generator, and
post-processing block. The output of this block is
trying to reconstruct the original input signal as shown
in figure below.

Figure 2: Block Diagram of the Proposed system
transmitter side

The first block of the system is preprocessing block
where the data is preprocessed to obtain the signal that
is suitable for further processing. Here, mainly the
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time domain audio data set is converted into the
spectral domain using STFT (short-time Fourier
transform) as a result the data is converted into a
spectrogram.

The next block consists of the encoder block where the
input signal in the form of mel spectrogram is encoded
as initialization of compressed signal, as a result, the
signal is converted into latent vector z which is the
third block of the system block diagram. The encoder
is cascaded to the generator of the GAN to form the
auto-encoder which is trained and maps from signal
space to latent space.

The next block is the generator block of the GAN
network. The generator and the discriminator of GAN
produce the loss function which is the feedback to the
generator and the latent vector, which in turn, updates
and optimize the latent vector z to minimize the
specific objective function. During this iterative
backpropagation process, the optimal latent vector is
discretized and quantized for the compression of the
signal.

At the last stage, the latent vector is entropy encoded
using arithmetic encoder for further signal
compression and transmitting the signal to the
receiver end.

Figure 3: Block Diagram of the Proposed system
receiver side

At the receiver, the signal is first entropy decoded using
arithmetic decoder and generated signal using the same
generator parameter which is trained at the transmitter
side that produces the mel-spectrogram which is post-
processed on post-processing block to convert into the
audio signal using inverse STFT.

3.4 Dataset Explanation

The TIMIT corpus of read speech was created with
the intention of providing speech data for
acoustic-phonetic research as well as for the
development and evaluation of automatic speech
recognition systems. 6300 words altogether, each

recorded at a sample rate of 16 kHz, were given by
630 speakers from 8 major American dialect regions
for TIMIT. Texas Instruments, Inc., SRI International,
and the Massachusetts Institute of Technology (MIT)
worked on the corpus design. The speech was
recorded at Texas Instruments, typed out at
Massachusetts Institute of Technology, verified at the
National Institute of Standards and Technology, and
then prepared for CD-ROM production. Utilizing the
TIMIT dataset, the voice compression network is
trained.

Table 1: Dialect distribution of speakers

Dialect Regions Male% Female% Overall%
dr1: 63 27 8
dr2: 70 30 16
dr3: 67 23 16
dr4: 69 31 16
dr5: 63 37 16
dr6: 65 35 7
dr7: 74 26 16
dr8: 67 33 5
Total (8) 70 30 100

3.5 Description of Algorithms

3.5.1 BPGAN Algorithm

Figure 4: BPGAN Algorithm

The basic algorithm was the BPGAN Compression
algorithm. Initially, the GAN-based generator network
was well trained, an autoencoder was constructed; also
the quantization function was pre-defined. The signal
to be compressed x is given as an input along with
objective function F(.) and quantized set S. These
prerequisites were fulfilled by the well-trained GAN
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initially. The BPGAN compression algorithm is shown
in figure.

3.5.2 ADMM Algorithm

ADMM alternating direction method of multipliers is
an algorithm that solves convex optimization
problems by breaking them into smaller pieces, each
of which is then easier to handle. Initially, the
GAN-based generator network was well trained, an
autoencoder was constructed; also, the quantization
function was pre-defined. The signal to be
compressed x is given to input along with objective
function F(.) and hyperparameters µ and α are
initialized.

The objective of the algorithm is to optimize the latent
vector quantization starting with latent vector
initialization and quantization iteratively calculating
objective function, gradient descent, and quantized
latent element on discrete space until convergence to
the optimal latent variable of the BPGAN. The
ADMM algorithm is shown in the figure.

Figure 5: ADMM Algorithm

3.6 Potential Verification and Validation
Procedures

The quantitative performance of the proposed audio
compression method is primarily measured by the
quality of the speech compression. Both subjective
and objective matrices can be used to evaluate the
speech signal. The potential matrices could be PSEQ,
human evaluation under the guidance of MUSHRA,
and phoneme recognition tests.

3.6.1 PESQ and POLQA

Perceptual evaluation of speech quality PESQ is an
objective metric designed to predict the mean opinion
score (MOS) for speech quality by an algorithm. It is
adopted by ITU-T as a recommended standard metric.
This industry-standard audio quality measure
considers characteristics such as audio sharpness,
volume, background noise, interference, and latency
in the audio signal. PESQ values range upto 4.5, with
a larger score indicating better quality. The PESQ test
compares the original voice with audio output
creating a fully unbiased objective indicator. The
PESQ score can be divided into 6 bands as follows:

Table 2: PESQ score table meaning

SN Score Meaning
1 1.00-1.99 No meaning
2 2.00-2.39 Considerable effort required
3 2.40-2.79 Moderate effort required
4 2.80-3.29 Small amount of effort required
5 3.30-3.79 Appreciable effort is required
6 3.80-4.50 Complete relaxation possible

POLQA Perceptual Objective Listening Quality
Analysis is also an ITU-T standard and successor of
the PESQ model to predict speech quality by means
of analyzing digital speech signals. POLQA avoids
the weaknesses of the current PESQ model and is
extended toward the handling of higher bandwidth
audio signals.

3.6.2 Subjective Evaluation

The ITU-R Recommendation defined subjective
assessment of the intermediate audio quality level of
audio signal as a method for the subjective assessment
of intermediate audio quality. This method utilizes the
same grading system used to assess picture quality
and shares many similarities with Recommendation
ITU-R BS.1116. ”MUlti Stimulus test with Hidden
Reference and Anchor (MUSHA)” is the name of the
technique, and it has undergone successful testing.
These experiments have shown that the MUSHRA
approach provides precise and dependable findings
when used to evaluate intermediate audio quality. 5
people are asked to listen to the original and
compressed audio clips as part of the subjective
quality of the (de)compressed speech with experiment.
The users are then asked to rate the test samples from
0 to 100 based on their perceptual evaluation using
Multiple Stimuli with Hidden Reference and Anchor
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(MUSHRA).

4. Result

This section describes the detailed procedure of model
building and its results in each step. The audio
compression evaluation results at intermediate stages
are presented here.

4.1 Pre-processing

Here in the audio compression, the raw audio of .wav
format data was first converted into mel spectrogram
which is shown in the figure.

Figure 6: Mel Spectrogram

STFT was used to transform the audio signal into a
spectrogram signal. Here the time domain signal is
converted into the frequency domain for analysis and
processing.

4.2 Encoder Initialization

The mel spectrogram is then fed to the encoder
network. The encoder maps the variable length source
sequence into a fixed length vector named latent
vector in this way a latent vector was formed. NN
autoencoder module is used to encode the mel
spectrogram to the latent vector.

4.3 Optimize the Latent Vector

Here the objective is to compress the generated audio
signal generated from the GAN Generator. The
encoder initialized latent vector is optimized
iteratively updating the latent vector according to the
loss output of GAN. Here the latent vector z is
updated on backpropagation through the generator of
GAN. Basically, the gradient δ F(x,G(Z)) ⁄ δ Z was
computed for each iteration and optimal latent vector
z was obtained that minimizes the loss function.

4.4 Signal Reconstruction

At the receiver side, the signal is obtained and
decompressed by feeding the signal z to the same
generator network from the transmitter. Before
applying the signal to the generator, it was first
entropy decoded and at the end, the audio signal was
reconstructed from the mel spectrogram using inverse
STFT on post-processing.

Figure 7: Generated mel spectrogram

4.5 Output

Figure 8: Original and synthesized audio spectrogram

The output of the framework is the pair of the input
image and the synthesized image which is the mel
spectrogram. This spectrogram was applied to the
inverse STFT to construct the audio signal back. And
the evaluation of the output was performed.

5. Discussion and Analysis

The model present here was built as shown in the figure
for audio signal compression using GAN. First of all
preprocessing of the data was performed and the data
was converted into mel spectrogram form as described
in section 4 of the paper which involves the STFT.

In the next step, the GAN model was initialized with
the latent vector z which was constructed using an
autoencoder, and the GAN model was trained for the
dataset described in section 3. The model was built
and trained and tested for the ADMM backpropagation
algorithm. The model was trained for 160 epochs
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normally signify that the GAN model was stabilized
therefore the training was stopped and mean square
error loss of the model MSE Loss, Discriminator loss
on real image D real, and discriminator loss on fake
image D fake was plotted as shown in the figure below.

Figure 9: Mean square error loss

Figure 10: Discriminator loss on a real and fake
image

The compressed speech rate was measured and
evaluated using a latent vector z size of 512 and 16
non-uniform quantization levels for each element.
Speech compression performance was present on the
table below which shows the performance of the
model is same as that of the Unified GAN Model
performance.

Table 3 presents the compressed speech rate shows
that the bitrate of the signal can be brought down to
6.6 kbps with the cost of quality matrix PESQ and
MUSHRA reduction. The table suggests that
balancing the compression constraints like quality and
compression ratio is unable to be attained hence [26]
suggests using the deep learning algorithm to
compress the signal to balance the compression
constraints. Hence the use of Deep learning algorithm

shows that the bit rate of the signal is possible to bring
down to 2 kbps with the cost of compromising quality
matrix PESQ and MUSHRA reduction.

Table 3: Speech Compression Performance
Comparison

Method Bitrate PESQ MUSHRA
Original 256k 4.50 95.0
Unified GAN 2k 3.25 64.1
CELP 8k 3.39 59.4
Opus 9k 3.47 79.3
AMR 6.6k 3.36 58.9
BPGAN 2k 3.26 64.9

6. Conclusion

A GAN-based compression model was described, as
well as a Back propagation GAN based audio signal
compression approach that creates compressed data
with acceptable quality at comparatively low bitrate
via iterative back-propagation to find the ideal latent
vector. The method uses ADMM with non-uniform
quantization to look for the best latent representation of
the signal in order to increase compression ratio. The
method first trains the generator network model in a
GAN configuration, after which it repeatedly updates
and discretizes the best latent code for each signal
input for compression using the pre-trained generator.
Results from experiments show that compared to other
techniques measured using different criteria, such as
neural network-based image classification and audio
phoneme recognition, the signal compressed using
GAN shows a much lower data rate and acceptable
signal quality. In the future, further extension of the
presented approach could be enhanced by adopting the
different optimization techniques instead of ADMM.
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