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Abstract
Pedestrian trajectory prediction in crowded space with multi-agent are extensively researched with possibility
of being automated using learned models. The key task is to accurately encode observation sequence, model
long-term dependencies from the past trajectories and forecast potential trajectories and reducing the task
complexity to a manageable subset from which we can learn social impact from other pedestrians, scene limits,
and multi-modal possibilities of expected routes and generalize to challenging scenarios and even output
unacceptable solutions. This paper presents effective use of hard negatives samples with contrastive learning
to preserve motion representation, which captures desirable generalization properties, very little computational
overhead and improved the quality of visual representations in socially aware pedestrian trajectory prediction.
The data set used was ETH-UCY, comprising of total 5 different sets ETH, Hotel, Univ, Zara1 and Zara2
with ADE,FDE and Collision Avoidance Metric as metrics for performance. The result shows that proposed
methodology with hard negative sampling has better collision avoidance with values 0.3, 0.56 and 0.08 in
Hotel,Univ and Zara1 dataset respectively. However, state-of-art Social-NCE[1] shows better average FDE for
all dataset i.e 0.381(Social-NCE)<0.47(Our).
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1. Introduction

With the development in deep learning techniques,
RNN and LSTM networks have been commonly
applied to time sequence data for a variety of issues,
including speech recognition, language processing,
and machine learning. Similarly, literature shows
ample research on extraction of features from human
trajectories [2, 3], simulation of human-human/space
social relationships [4]. Exploring contrastive learning
for data augmentation in this study with primary focus
on hard negative sampling, we learn motion
representation and train encoder-decoder architecture.

Different neural network models for learning
socially-aware motion, representations has been
extensively used and demonstrated their utility for
human trajectory forecasting [2, 3] in crowded
environments. Models built around covariance shift
did not contain enough scenes with complex
situations while models making use of interactive data
collections, such as expert queries and interaction

with the environment,vare inexpensive but are
infeasible for forecasting problems. Approach
suggested by [1] uses prior knowledge about socially
unfavorable events and exploit learning in a robust
neural motion model. However, such learning
techniques uses both positive and negative samples,
which significantly increase batch sizes and
computational overhead.An effective approach may
be to use hard negatives sampling with user controlled
hardness which captures desirable generalization
properties, very little computational overhead and
improved the quality of visual representations, as seen
on previous works on image dataset, presented by
works in [5]. However, such comprehensive
confrontation is still lacking in pedestrian trajectory
prediction.

2. Related Literature

With time, pedestrian trajectory prediction has
shifting from physics-based models to data-driven
models based on deep learning. [6] pioneered one of
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the first approaches to pedestrian behavior modeling,
known as the Social Forces Model using handcrafted
features that reflect various powers that work on the
pedestrian.This work highlighted three forces:
acceleration toward the target velocity of motion,
repulsive effect, and attractive effect. Agent-based
modeling[7], including the social force model, has
been used to predict human behavioral behaviors. [8]
modelled human interaction behavior using strong
priors in a discrete decision system.Further, Crowd
simulations makes use of motion models and [9] used
agent-based approaches for this purpose. The method
models each person uniquely, and in order to produce
practical simulations, a thorough understanding of
various agents is needed.

Physics-based pedestrian behavior simulation has
improved over time, with the advent of sophisticated
strategies such as BRVO[10], which draws on
Reciprocal Velocity Obstacle RVO! (RVO!)[11] and
the Ideal Reciprocal Collision Avoidance(ORCA)[12].
These physics-based models, on the other hand, are
constrained by the fact that they use hand-crafted
functions, and therefore can only describe a subset of
all possible behaviors.

As of 2016, forecasting potential trajectories use
evidence, a data-driven approach that entails
understanding how people walk by training a machine
learning algorithm for real-world pedestrian
trajectories. Data-driven methods can explicitly
extrapolate the laws and nuances of human walking
behavior that would be difficult to formalize from data.
Learning how people walk solely from observable
trajectories necessitates three key components: a
machine learning algorithm with sufficient
representation capacity, an efficient optimization
strategy, and a sufficient amount of real-world
evidence. deep learning models for pedestrian
trajectory prediction in the literature depend primarily
on the use of Recurrent Neural Networks (RNN),
specifically Long Short-Term Memory (LSTM)[13]
cells. The Social LSTM[2] model was one of the first
to use such an approach, pioneering the use of deep
learning in pedestrian trajectory prediction. To model
social interaction, social knowledge is depicted as a
grid of nearby pedestrians. For modelling social
interaction, social knowledge is depicted as a grid of
nearby pedestrians. Extraction of features from
human trajectories [2, 3], simulation of
human-human/space social relationships [4], and
understanding the mutual activities of heterogeneous

social actors [14] have been the subject of most of the
recent existing trajectory prediction study.

3. Methodology

This research work, in addition to the encoder decoder
model implementation, also integrates hard negative
sampling and motion representation based on socially
aware interaction which is well suited for trajectory
predictions, and thus helps to avoid possible hazards.
The block diagram in Figure 1 is the model pipeline
for encoder decoder architecture, which given their
previous motion states, predicts future trajectories of
pedestrians in a scenes using encoded motion
representations based on shared social information.
Sequence encoder is used to encode time sequence
trajectory position of primary and secondary agents
and interaction encoder makes use of socially aware
contrastive learning based motion encoding to capture
interaction between pedestrians and establish social
representation among them. Using decoder, future
predictions can thus be made.

3.1 Dataset Description

This research work makes use of ETH[15] and
UCY[16] dataset, which represents the real world
coordinates i.e pedestrian are annotated by their
position in meters with origin in an arbitrary point of
world. ETH consists two scenes namely ETH and
HOTEl, taken from bird’s eyes view, where every
frame contains annotations of pedestrian’s position for
every 0.4 sec and a total of 750 different pedestrian.

Figure 1: Methodology
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Figure 2: Model Pipeline

Similarly, UCY contains three scenes(Zara1,Zara2
and Univ) with 900 different pedestrians and their
trajectories from bird’s eyes view.

3.2 Encoder-Decoder Architecture

The Encoder-Decoder architecture has become a
reliable and commonly used tool for neural machine
translation (NMT) and sequence-to-sequence
(seq2seq) prediction in general.

Figure 3: Encoder-Decoder Architecture

The Figure 3 show the encoder decoder architecture
which consists of 3 parts: encoder, intermediate
(sequence embedding) vector and decoder.

Encoder A stack of multiple recurrent units (LSTM
or GRU cells for improved performance), each of
which accepts a single element from the input list,
gathers information for that element, and propagates it
forward. The hidden states hi are computed using the
formula:

ht = f(W(hh)ht−1 +W(hx)xt) (1)

This is the model’s final hidden state as created by the
encoder.This vector attempts to encapsulate all input
element’s information in order to assist the decoder in
making correct predictions. It serves as the model’s
original hidden state and input to the decoder.

Sequence Encoding
Since the model is trained and tested using
trajectron++, the input trajectory sequence is as
shown in Figure 1, dataset block. Sequence Encoder
encodes temporal information.

Interaction Encoder
This work makes use of non grid based interaction
model, which captures the social interactions in a grid-
free manner, thus the spatial information is preserved.

Decoder A stack of periodic units, each of which
predicts an output yt at a time phase t. Each recurrent
unit accepts a hidden state from the previous unit and
generates both an output and its own hidden state. The
formula is used to compute every hidden state hi:

ht = f(W(hh)ht−1) (2)

3.3 Contrastive Representation Learning

This research work makes use of contrastive learning,
a technique to learn an embedding space using
similarity measures and selection of hard negative
samples to approximate viable neighbourhood
relationship. Learning a parametric function that
maps raw data into a feature space to extract abstract
and usable knowledge for downstream tasks is
characteristic of representation learning[17]. To train
an encoder, recent contrastive learning methods often
use the concept of noise contrastive estimation in an
embedding space, namely the InfoNCE loss[18] given

1409



Pedestrian Movement Prediction Using Encoder-Decoder Model

by equation below:

LNCE =−log
exp(sim(q,k+)/τ)

∑
N
n=0 exp(sim(q,kn)/τ)

(3)

where the encoded query q is brought close to one
positive key k0 = k+ and pushed apart from N negative
keys k1, . . . , kN , τ is a temperature hyperparameter,
and sim(u,v) = uT v/(||u||||v||) is the cosine similarity
between two feature vectors.

3.4 Evaluation Metrics

The evaluation of models that suggest a single future
mode for a given past observation is referred to as
unimodal evaluation. In the unimodal context, the
most widely used metrics for human trajectory
forecasting are as follows:

1. Average Displacement Error (ADE)
This metric, like the one used in [19], calculates
overall predicted time steps average L2 distance
between ground truth and model prediction

2. Final Displacement Error (FDE)
At the completion of the forecast cycle, the
distance between the predicted final destination
Tpred and the ground truth destination.

3. Collision Avoidance
This metric shows whether or not the expected
model trajectories intersect, indicating whether
or not the model knows the concept of collision
avoidance.

4. Result and Analysis

Figure 4 shows pedestrian present in frame 395 of
dataset.Different color and line codes are done to
represent past, prediction and ground truth trajectories.
This frame was used for training the model. The
frame consists of group and other category
pedestrians.

Similarly, Figure 5 is the figurative representation of
frame 108 and contains multiple ground truth because
those trajectories are sampled for multi modal
trajectories. This frame consists of single pedestrian.

Figure 4: Univ: Trajectory for Train

Figure 5: Univ: Trajectory for Test

Similar result was observed for multi pedestrian for
both training and testing frames of Univ as presented
in Graphics 6 and Figure 7.

Figure 6: Univ: Multi Pedestrian Trajectory for Train
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Figure 7: Univ: Multi Pedestrian Trajectory for Test

Also, similar observation can be seen for Zara dataset
as shown in Figure 8, Figure 9, Figure 10 and Figure
11.

Figure 8: Zara1: Trajectory for Train Scene 326

Figure 9: Zara1: Trajectory for Test Scene 1273

Figure 11: Zara1: Multi Pedestrian Trajectory for
Test Scene 62

Figure 10: Zara1: Multi Pedestrian Trajectory for
Train Scene 302

The evaluation of proposed architecture was done
using ADE, FDE and Collison Avoidance metrics
described above. The change in ADE,FDE and
Collision Avoidance is shown using curve in Figure
[12,13,14,15,16] .

Figure 12: ADE, FDE and Collision for ETH Dataset
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Figure 13: ADE, FDE and Collision for HOTEL
Dataset

Figure 14: ADE, FDE and Collision for UNIV
Dataset

Figure 15: ADE, FDE and Collision for ZARA1
Dataset

Figure 16: ADE, FDE and Collision for ZARA2
Dataset

The decreasing nature of all metrics curve suggests
that the model is learning.

Table 1: Comparison With Social-NCE

Dataset Social-NCE [1] Our
FDE COL FDE COL

ETH 0.71 0.00 1.055 0.23
Hotel 0.177 0.38 0.225 0.3
Univ 0.435 3.08 0.465 0.56
Zara1 0.330 0.18 0.32 0.08
Zara2 0.255 0.99 0.289 1.70

The metrics presented in Table 1 is for 30 epoch and
shows that proposed hard negative sampling performs

better collision avoidance than Social-NCE model in
all datasets except ETH , however Social-NCE shows
better ADE and FDE for all dataset.

5. Conclusion

From the results as presented in Section 4, we can
observer better collision avoidance performance by
the implemented model. This paper proposed a
methodology to effectively sample data using hard
negative sampling as data augmentation technique.
An enhanced method that derives motion
representation with no changes to the primary task,
thus this method can be easily implemented along
with any deep learning models. As the result shows,
there is a significant improvement in collision
avoidance using the hard negative sampling approach,
as measured by values of 0.3 in the Hotel dataset and
0.56 in the Univ dataset as well as 0.08 in the Zara1
dataset.
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