Proceedings of 10t IOE Graduate Conference

Peer Reviewed
2350-8906 (Print)
Month: October Volume: 10

ISSN: 2350-8914 (Online),
Year: 2021

Burrows-Wheeler Post-Transformation with Effective Clustering

and Interpolative Coding

Amit Kumar Yadav 2, Sanjeeb Prasad Panday °

a.b Department of Electronics and Computer Engineering, Pulchowk Campus, IOE, Tribhuvan University, Nepal
Corresponding Email: 2 075mscsk002.amit@pcampus.edu.np © sanjeeb@ioe.edu.np

Abstract

Burrows-Wheeler Transformation, in simple words, sorts the data reversibly. Generally, sorted data can’t
be reversed to its original form but BWT uses the last index to get the original data. In this research the
main focus is to manipulate the result of BWT for better compression. The BWT, RLE and MFT are used
together. The order of using these may differ according to the requirement. We have used RLE and MFT after
BWT in this research. The result of BWT has been passed through RLE module to get the Run characters,
Run Length and Run Character frequencies. The Run characters and Run Character Frequencies has been
passed through MFT module to get MFT number and final MFT list. Then the MFT number and Run length,
which are non-negative integers, has been sorted using counting sort module. This module sorts the numbers
according to Run characters. The result is non-negative integer which has been coded using interpolative
coding method. This method does not uses any statistics like calculating probabilities to produce final result.
Hence the method is also called Non-statistical Coding. The data has been decompressed using the same
module as compression but in reverse order. The data is decoded using interpolative decoder and then MFF
module has been used to unsort the data and provide Run Characters and Run. These are passed through

Keywords

RLE decoder to get the original file. It results lossless output.

BWT, Lossless Compression, Non-statistical Coding, Run Length Encoding, Move to Front coding

1. Introduction

The conversion process of the original data into the
compressed data, having smaller size is called Data

Compression. The original data can be of any format.

It can be a file or bits passing through communication
Channel. Coding is a general term which is often
used to define data compression. Information theory
is characterized as the study of efficient coding and
its outcomes, in the form of transmitting speed and
possibility of error [1]. Information theory is the base
on which compression algorithms have been built.

Lossy compression of data like image, audio and
video can be used to obtain highest savings but also at
someplace lossless compression is essential. Lossless
compression is a technique which makes sure of
recovering the original data, while the decompression
of lossy methods result an approximation of original
data. The compression process usually consists of two
main parts: modeling and coding. Modeling usually
produces the input for coding, together with the

probability distribution, a set of (possibly
transformed) items. The source data is transformed in
many modelling methods into a series of smaller
integer which can be encoded more compactly than
the original items [6].

Since the first publication in 1994, researchers in the
lossless compression field have been particularly
interested in the Burrows Wheeler Transformation
(BWT) [2]. Besides the theoretical interest of BWT,
highly practical lossless compression schemes can use
it as a basis. BWT-based schemes usually
compromise between the high compression rate of the
prediction by partial matching (PPM) method with the
pace of dictionary-based methods such as the variants
Lempel-Ziv.

The BWT uses necessary input symbols as the sort
key to sort the data uniquely. Similar data are grouped
together creating a cluster. The data in same cluster
contains same character a number of times and only
few symbols can be there based on similar contexts.

Pages: 1269 — 1276

Burrows-Wheeler Post-Transformation with Effective Clustering and Interpolative Coding

The major drawback of BW transformation is that the
idea of boarder line between original contexts and
context regions is lost. Without using some time
consuming and complex techniques like context
exhumation method, it is not possible to recover
original data from transformed sequence.

The BWT is not a compression algorithm but a
technique to prepare data for post-transform
algorithms. Usually, the MTF and Run Length
Encoding (RLE) is used in series after BWT to
achieve compression. In this research, we focus on
implementing proper methods as post-transformation
stage to achieve better compression. Also the main
focus of this research is to obtain better compression
than statistical method by using non-statistic coding
methods like Binary Interpolation Method.

2. Related Literature

2.1 Local-to-Global Transform

Compression is directly dependent on the context of
the source. When it changes, the symbol distribution
within the BW transformed data also changes. These
changes can perform dramatic effect on the
performance of the algorithm. Using entropy coders
to react to these changes cannot be enough even when
it is adaptive. For this reason, Local to Global
Transform (LGT) is employed in most methods. The
purpose of this stage is to transform the local structure
of the BWT output into global structure which can be
considered more stable over the entire file.

In the original publication of BWT, Burrows and
Wheeler suggested a recoding method as LGT. They
used Move-to-Front (MTF) as LGT. This method
converts a given input characters into integer denoting
their last position and move it to the front. It is
described in more detail in next section. Many authors
believe that using this method is adding unnecessary
complication. Some has suggested to get rid of it to
obtain better compression but at slower rate. The
major drawback of using MTF is that the contextual
information is lost in the way. But other authors have
mentioned that MTF can represent a better
compromise between speed and compression rate.

Entropy Coding It is the final stage of the
compression method. In this stage the actual
compression happens. There are various ways to
encode data. One of them is semi fixed coding. In this

coding variable length of bits is assigned to each data.

Since this research is about integer coding, one of the
very popular integer coding called interpolative
coding has been implemented.

2.2 Semi-fixed Length Coding

When the upper bound of an integer that needs to be
coded is not a power of two, Semi-Fixed length coding
is used [3]. It’s also called “truncated binary coding”
by Golomb. It is a prefix code which contains two
code word lengths: n and n-1 bits. There are many
number of possible assignments of semi-fixed-length
codewords to the n integers, but only the following
four are used as it is easily computable:

Table 1: Semi Fixed Coding

| Number | Low Short | Mid Short | High Short | Mid Long ||

0 100 0000 0000 100
1 111 0011 0011 0000
2 0000 0100 100 0011
3 0011 0111 111 0100
4 0011 100 0100 0111
5 0100 111 0111 111

2.2.1 Interpolative Coding

One of the non-statistical coding method for bounded
coding of non-negative integers is Interpolative
coding [4]. This coding technique is simple and very
efficient to encode sequence of integers. For all other
non-statistical, non-parametric coding methods,
interpolative coding is practically superior in case of
compression gain. It was originally invented for
inverted indexes which consist of strictly increasing
sequence of integers but any sequence of integers can
be converted into ascending order by computing
cumulative values. Conceptually, it can be divided
into two stages:

1. For each integer in the source, compute the
upper bounds

2. Encoding each integer with either log2(n) or
log2(n-1) bits, where n is the upper bound for
that integer

3. Methodology

BWT is not a compression algorithm. But it is used
to process the data and feed it to other algorithms
to compress. Generally, RLE and MFT are used for
compression in different order with BWT. Figures 1
and 2 show the order of different modules used in this

1270

Proceedings of 10" IOE Graduate Conference

research and their order. Also the general algorithm
used in this research is given in Algorithm 1.

The compression and decompression works in reverse
fashion. For decompression same modules are used
but in reverse order. In this research for desorting the
MTF numbers a new method has been used called
Move-From-Front. This name is given according to
its work. Its moves the data from front to its original
location using final mtf list.

BNT pernutation index

BWT
permutation index

G
header

Run character frequencies

Run Final
characters| MTF | MTF List state
InterEncode
e 1
nunbers
Sorted
HTF nunbers
InterEncode

Sorted

run Tengths
1 InterEncode

I
I InterEncode

BWT

RLE

Compressed

Run
characters
data

Sort
Run lengths

3.1 Run Length Encoding

The traditional way of run-length encoding has been
used. The two-vector approach has been used along
with it. Due to interpolative coder characteristics, run
characters and their lengths are kept separately. The
run characters are converted into MTF numbers by
using MTF coder.

The RLE of our post-transformation method is shown
in figure 4. The run character frequencies are also
computed and stored in alphabetical order. The MTF
recoding uses this data to determine unique alphabets.
In next section, it is used for computing the indices
of sort bin. The method is called clustering based on
sorting.

Figure 1: Encoding Mechanism

BWT index

Run character
frequencies

InterDecode |—){ Desort

Tun characters M numers, run Lengths

Sorted
MTF numbers InterDecode

Figure 2: Decoding Mechanism

Final
MTF list state

InterDecode

characters, Reverse-
BWT

Sorted

run-lengths RLDecode

I —
| —

Run lengths

Changing the context changes the symbol distribution
in the BW-transformed data. These changes directly
affect the encoder performance. Even the Encoder is
adaptive, it may not react smooth enough to adapt such
changes. To overcome this effect, a method called

Local-to-Global Transform is employed after BWT.

This implementation gives more stable spreading of
symbols over the complete file. MTF has been used in
the original paper of BWT as the LGT. The purpose
is to change each character in the input to number of
distinctive characters from its previous incidence. The
basic algorithm is as below:

Algorithm 1: BWClusteringCoder

Input: orig : Input File

Output: b : Compressed file

1: (bwt, bwtlndex) «—— BWTransform(orig)

2: (runCharacters, runLengths, ranCharacterFrequencies) «— RLEncode(bwt)
3: (mtfNumbers, finalMtfListState) «— MTFRecode(runCharacters,
runCharacterFrequencies)

4: (sortedMtfNumbers, sortedRunLengths) < CountingSort(mtfNumbers,
runCharacters, runLengths, ranCharacterFrequencies)

5: b < bwtlndex

6: b append InterpolativeEncode(finalMtfListState)

7: b append InterpolativeEncode(runCharacterFrequencies)

8: b append InterpolativeEncode(sortedMtfNumbers)

9: b append InterpolativeEncode(sortedRunLengths)

Figure 3: BW Clustering Coder

Input aabbaabbccdacddaadd
Run Characters a b a b c dacd a d
Run Lengths 2 2 2 2 2 1112 2 2
Run Character 4 2 23

Frequencies

Figure 4: Example of Run Length Encoding of BWT
Output

3.2 Move-to-Front-Coding

Each run character is converted to the number of
distinct characters using MTF since its last presence.
The two-vector method of RLE lets to decrements
each MTF number by one as we described in above
section. The MTF process is explained in Algorithm 2.
Figure 6 shows a descriptive example.

Algorithm 2: MTFRecode
Input: runCher - Sequence of run characters produced by the two-vector RLE
Input: runCharFreq: Global run character frequencies
Output; mif: The MTF numbers
Output: final MifList: Final state of the MTF list
1:§¢0
: last_ix + length(runChar) — 1
- // Imtialize mtfList
: for 1 from O upte 255 do
- if runCharFreq[i] = 0 then
- mtfList[j] & i
Tjej+l
8 end if
9: end for
10: // Perform the MTF recoding
11: for i from 0 upto last_ix do
12: ¢ + runChar[7]
130
14: // Find the position of ¢ in MtfList
15: while mtfList[j] !=c do
16:jj+1
17: end while
18: // Update mtfList by moving ¢ to the front
19: for k from j downto 1 do
20: mtfList[k] < mtfList[k - 1]
21: end for
22 mtfList[0] & ¢
23: // Distinet neighbors: can subtract one from MTF number
24 mtf[i] = -1
25: end for
26: finalMtfList < mtfList
27: return (mtf. finaIMtfl 1st)

Figure 5: MTF Coder

2
3
4
5
6

1271

Burrows-Wheeler Post-Transformation with Effective Clustering and Interpolative Coding

Run character a c a d a
: /i /’3 / L7 /2 /’ / /d
b
<

[T JorT2 Jor2 Jord2 [z [r []

b

MTF list state

MTF number

Processing direction

Figure 6: MTF of Run Characters

3.3 Clustering by reversible sorting

MTF numbers are small and run lengths are long for
common characters while it’s an opposite case for
uncommon characters. The triples of [MTF number,
run character, run length] can be used to exploit this
knowledge by clustering it. It is done by using run
characters [5]. Also, it must be remembered that the
reversible operation of Clustering should be possible
to recover the original triples.

Two arrays are created as output by the encoder. The
one output is for MTF numbers and another output is
for run lengths. In algorithm 3, we have said that the
arrays are divided into bins. Figure 8 shows that the
bins are implicit and the joined in alphabetic order. To

show the next available position, a pointer is used.

Each pointer initially points to the start of the
respective bin. The triples, MTF number, run
character and run length, are evaluated from left to
right. The current run character is used to sort the
current run length and MTF number. Finally, the
pointers pointing to bin are increased by one,
maintaining the stability.

Algorithm 3: CountingSort

Input: runChar - Sequence of run characters produced by the two-vector
RLE

Input: runCharFreq: Run character frequencies

Input: mtf: Sequence of MTF numbers produced by the MTF recoding of
the run characters

Input: runLen: Sequence of run lengths produced by the RLE

Input: runCount: Total count of runs

Output: sortedRunLen: run lengths sorted by the associated run
characters

Qutput: sortedMtf: MTF numbers sorted by the associated run characters
1: // Compute sort bin indices

- binPtr{0] < 0

- for i from 1 upto 255 do

. binPtr{] < binPtr{i = 1] + runCharFreq]i-1]

end for

. I/ Loop over the run length and MTF vectors

- for i from 0 upto runCount-1 do

9: ¢ = runCharfi]

10: m < mitff]]

11; r < runLen[i]

12: J/ Sort the MTF number produced by this occurence of ¢
13: sortedMif[binPtr{c]] < m

14: // Sort the run length produced by this occurence of ¢
15: sortedRunLen[binPtr{c]] < r

16: binPtr{c] < binPtr[c] + 1

17: end for

18: return (sortedMif, sortedRunlLen)

O~ U A WN

Figure 7: Counting Sort

Run character a c a d a b a c b d < b

MTF number 0 1 o 2 0 2 0 2 1 2 1 1
\‘ R

Run length 2 /1 1 0 2 2 0 0 3 1 b2

{ / W
Sorted MTF numbers | [0 O O[O 2 /T3 |1. ‘1 [2 T T2 [z |

\ v v
T oz [J2 1 [t Jo Jo [1]

Sorted run lengths
a b c d

Processing direction

Figure 8: MTF numbers and Run Length sorting

3.4 Interpolative Encoder/Decoder

Mid-short codebook is used by encoder to assign
shorter codes to the middle part. In case of sorted
MTF numbers and Run lengths, Center short
codebook is used for each nodes [6].

The decoder works in reverse order. It takes the
combined output of encoder as shown in figure 11. As
it can be seen the decoder can decode the encoded
inputs but it will be still sorted. So a unsort algorithm
has to be applied along with reverse Move-To-Front
mechanism which is coined as Move-From-Front.

Algorithm 4: InterpolativeEncoder
Input: Sequence of 1 nonnegative integers S[0*+ i = 1]
Output: Binary code sequence B
1: for i from O to 2 — 1 do
T(n+ i) < [S][2]

- end for

2
3
4: for 1 from n - 1 downto 1 do
STE < TR#i+TR2xi+1]
6: end for

7: B < universal-encode(T[1])

8 forifrom 1 ton—1do

9: bound < T[i]

10: if bound >0 then

11: B append sem-fixed-length-encode(T[2 = {], bound)
12: end if

13: end for

14: return

Figure 9: Interpolative Encoder

3.5 Move-From-Front Decoder

The decoder looks at the final state of MTF list and
read the character at the front of the list. Then it applies
the process called desorting to next number in the MTF
list and Run length from the container or bin of that
particular character [7]. It reads the MTF number and
then moves the character downward in MTF list by
that number. This way it operates in reverse order than
MTF [8].

Run character frequencies are used by the decoder to
reverse the sorting. Since the decoder is operating in
reverse order now, the pointer pointing to bins are now
set to point to the rear of sort bins. MTF list is
updated as well as bin pointer is decremented after
desorting. This process continues as iterative process.

1272

Proceedings of 10" IOE Graduate Conference

The process is shown in Algorithm 5 and MFF

transform is shown in Figure 11.

Algorithm 5: MEF Transform]

Input: sortedMtf: Sequence of sorted MTF numbers {concatenated sort bins)
Input: sortedRunLen: Sequence of sorted run lengths (concatenated sort bins)
Input: runCharFreq: Run character frequencies

Input: mtfLast: Fmnal state of the MTF st after MTF stage

Output: runChar: De-sorted run characters

Qutput: runlen: De-sorted run lengths

1: runCount +— length(sortedRunLen)

2: // Compute sort bin rear indices for MTF numbers and run lengths
3: binPtr{0] + runCharFreq[0] — 1

4: for i from 1 upto 255 do

5: binPtr{i] ¢ binPtr[i — 1] + runCharFreq[i]

6: end for

T:

8: // Loop over the run length and MTF vectors from end to start
9: for 1 from runCount—1 downto 0 do

10: ¢ + mtfList[0] & Run character (sort key)

11: m = sortedMtf[binPtr[c]]

12: r < sortedRunLen[binPtr{c]]

13: runCharfi] < ¢

14: runLen[i] <= r

15: binPtrle] + binPtr[e] - 1

16: // Update MTF lst: move front character ¢ backwards m+1 steps
17: for j from 0 upto m do

18: mtfList[j] < mtfList]j = 1]

19: end for

20: mtfListfm~1] < ¢

21: end for

22: return (runChar, runLen)

Figure 10: MFF Transform

MTF list state a € . A d . a b . a (5 b d C b
b/a[./(‘aﬁ./d:a/b.a/ckb/d/c
¢ b b/ c ¢/ d d/ b a/f ¢ b d
d d d b b c e d d a a a
MTF numbers 0 1 0 2 0 0 2 1. 2 1

{
Run lengths 2"‘:\ 1 1 o 2 4‘? 0 o] 3 1 D///S

L /
IET T EE N W

\
\
Sorted MTF numbers ‘ U\. ‘ 2 ‘ 0 ‘ i ‘ A

\ | _
ETETeT ez [5 2 : [t Jo Jo [1]

a b £ d

Sorted run lengths

Processing direction

Figure 11: Move-From-Front Transform

4. Experimental Results

This research has been evaluated on standard dataset
for data compression: Calgary, Canterbury, Large and
Artificial corpora. This research is mainly focused on

compressing text files using integer coding technique.

So, files which are not text are not included. The
compression results are shown below:

. Bzip2
Original Compres
: : : Compres
File Size sion)
sion
(Bytes) Factor Error
'bib 111261 4.076092 4.050715
book2 610856 3.999529 3.879855
Inews 377109 3.257989 3.179671
paperl 53161 3.248854 3.210593
‘paper2 82199 3.317419 3.282577
‘paper3 46526 2.957412 2.937804
‘paperd 13286 2.565856 2.56091
|paper5 11954 2.481628 2.471367
‘paperb 38105 3.120803 3.099984
progc 39611 3.19392 3.157765
.progl 71646 4.666884 4.598883
‘progp 49379 4.6562 4.610551

Figure 12: Compression Result on Calgary Corpus

Original Bzip2
File Size Compression Compression
(Bytes) Factor Factor
alice29.txt 152089 3.60665 3.52042
|asyoulik.txt 125179 3.19595 3.16356
cp.html 24603 2.95354 3.22705
fields.c 11150 3.5806 3.66897
Egrammar.lsp 3721 2.85352 2.90023
|lcet10.txt 426754 4.07998 3.96221
|plrabni2.txt 481861 3.36852 3.31001
lsum 38240 2.70859 2.96227
|xargs.1 4227 2.38006 2.39898
Figure 13: Compression Result on Canterbury
Corpus
Bzip2
File Original Compres Compres

Size sion sion
. (Bytes) Factor Factor
bible.txt 4638690 5.21462 5.48545
:E.coli 4047392 5.87371 3.23531
‘world192. 2473400 3.36265 5.05205

Figure 14: Compression Result on large Corpus

1273

Burrows-Wheeler Post-Transformation with Effective Clustering and Interpolative Coding

) Original Bzip2
e Size Compress Compress
(Bytes) ion Factor ion Factor
a.txt 1 0.05263 0.02703
aaa.txt 100000 1.08421 2127.66
alphabet.txt 100000 833.333 763.359
random.txt 100000 1.19304 1.32128

Figure 15: Compression Result on Artificial Corpus

4.1 Compression Results

The compression depends on the content of files. As it
can be seen the compression result is close to bzip2.

Calgary Results

bib book? s paperl psper? pasper3 paperd paperS paper6 progc prog progp

—e—Compression Factor —s=—B2ip2 Compression Factor

Figure 16: Compression Factor on Calgary Corpus

Canterbury Results
4
35
3
25

alice29.txt asyouliktxt cphtml fieldsc grammarkp lcetl0bdt pirabni2iod sum xargs.1

—e—Compression Factor === B2ip2 Compression Factor

Figure 17: Compression Factor on Canterbury
Corpus

Large Results

0 II II II

bible.txt E.coli

wv

S

w

N

[

world192.txt

B Compression Factor M Bzip2 Compression Factor

Figure 18: Compression Factor on large Corpus

Chart Title

’ 400
300
200
100

a.txt alphabet.txt random.txt

==@== Compression Factor === B7ip2 Compression Factor

Figure 19: Compression Factor on Artificial Corpus

4.2 Speed

The speed to compression data is almost equal to the
bzip2 compression speed. Since this research is mainly
focused on obtaining compression factor near to bzip2,
speed is not optimized. But still speed is close to
optimal. Also, the decompression time is a lot faster
than compression time for most of the files. Below we
can see the result of Artificial Corpus.

Speed

i
S]

Seconds

o N &

random.txt

I c— —
atxt alphabet.txt

Files

m Compression Time ~ m Decompression Time

Figure 20: Speed of Artificial Corpus

As we see Decompression speed is a lot more faster

than compression speed.

1274

Proceedings of 10" IOE Graduate Conference

5. Discussion

This research has used non-statistical coding method to
perform compression. Due to which the calculation is
easy but the time consumption slightly increases with
increase in MTF numbers and RLE numbers. Also it
works only for alphanumeric data. The performance is
not an issue here but it can be better.

The preprocessed data, BW-transformed data, is
needed to be used as an input in this research. A better
implementation of BWT method reduced time
significantly. The traditional method could not be
used to compute because of memory Error. But by
using Suffix Array it’s only a matter of second to get
preprocessed data.

Then, the only problem was traversing through the

binary tree during interpolative coding and decoding.

Better implementation of this coding/ decoding
method could result faster and better result than
Bzip2.

5.1 Read/ Write Structure

The input file has been preprocessed by passed through
BWT module which results the transformed file. This
module does not perform the compression but it helps
other modules to compress data effectively.

Input File Transformed File +
Index

Figure 21: Preprocessing

The index has been passed to final result as it is. First,
it is converted into binary format along with the
number of bits required to represent it. So,

BwtHeader = Binarylindex+ length(binaryindex)|
ey

Then, the Transformed file has been passed through
RLE module. This module produces three
intermediate files: Run chars, Run length, Run char
frequency. The Run chars are passed through MTF
module which provides MTF list and MTF Final State.
The Run chars, MTF list and Run char frequency are
passed Sorting module. This module sorts the MTF
list and Run chars to provide effective clusters for
compression. The Run char frequency and MTF Final
State are passed through Interpolative encoder to
generate Compression Header. The compression data
is made up of sorted MTF list and sorted Run length.

Since InterEncode module does not know where to
stop, the length of leaves are also encoded along with
the number of bits needed to represent it. The leaf bit
has been used to dynamically code the length of
leaves instead of fixed binary representation of leaves.
The leaf bit is of 2 bit length which provides the
information of how many bits has been used to
represent the length of the leaf node. Since the output
of InterEncode module is self-explanatory, combining
the output of other intermediate is not a problem.

The decompression process starts in reverse order.
First the BWT index is taken care of using its leaf bit.
Then the remaining file is passed through InterDecode
module to list the intermediate files recursively. After
the intermediate files are generated they are passed
through their respective decoder modules to generate
original file. It seems the length of compression files
may be heavy. But because of using dynamic binary
representation it is less than 1% of the total file. Thus
the compression overhead seems reasonable. Table
22shows the components of different files in the
testing corpora.

Intermediate Components bib Book2 Alice29.txt
BWT Index 16 bits 24 bits 8 bits

MTF Final_list 657 bits 786 bits 602 bits
Run Char Freq 852 bits L1160 bits 812 bits
Sorted MTF numbers 145402 bits 807003 bits | 225284 bits
Sorted Run lengths 71352 bits 412865 bits | 110522 bits

Figure 22: Compression Component Sizes

5.2 Time and Space Analysis

The analysis performed on a 64-bit machine having
6 GB Ram and 1 TB Hard disk. The compression
algorithm is directly dependent on the size and content
of the input file. Similarly, in case of decompression
even less space and time is required.

6. Conclusion and Future Work

In this research, a data compression using BWT has
been described. The processes that follows the BWT
are order and modified to generate better clustering of
data. Move-From-Front method has been used to
unsort the data reversibly. It can be seen that applying
sorting increases the cluster of similar data which
becomes beneficial while coding using non-statistical
and non-parametric coding method called
Interpolative coding. The combination of sorting and
Interpolative coding provides us a better compression
rate in significant time.

1275

Burrows-Wheeler Post-Transformation with Effective Clustering and Interpolative Coding

Further in this research, the sorting can be combined
with Arithmetic coder to use statistical approach for
better compression. As we can see the compression
results looks good but there’s still room for
modification. Also, codebook for interpolative coding
can play a vital role in compression. So, choosing the
best codebook can be beneficial. Since our final result
before coding is non-negative integer, it can be coded
using other methods as well which deals with these
type of inputs. Hence, this research can be further
analyzed for better compression using more suitable
methods.

References

[1] Witten L.H. Bell T.C. and J.G Cleary. Modeling for text
compression. 1989.

(2]

(3]
(4]

(5]

(6]

(7]

(8]

M. Burrows and D.J. Wheeler. A block-sorting lossless
data compression algorithm. 1994.

S.W. Golomb. Run-length encodings. 1966.

A. Moffat and L. Stuiver. Exploiting clustering in
inverted file compression. 1996.

A. Moffat and L Stuiver. Binary interpolative coding
for effective index compression. 2000.

Luka~c¢ N. Zalik B, Mongus D. and Zalik K. R.
Efficient chain code compression with interpolative
coding. 2018.

Teuhola J Niemi A. Burrows-wheeler post-
transformation with effective clustering and
interpolative coding. 2020.

P.M. Fenwick. Burrows—Wheeler Compression. In
Sayood, K. (ed.), Lossless Compression Handbook.
Academic Press, San Diego, CA, 2003.

1276

	Introduction
	Related Literature
	Local-to-Global Transform
	Semi-fixed Length Coding
	Interpolative Coding

	Methodology
	Run Length Encoding
	Move-to-Front-Coding
	Clustering by reversible sorting
	Interpolative Encoder/Decoder
	Move-From-Front Decoder

	Experimental Results
	Compression Results
	Speed

	Discussion
	Read/ Write Structure
	Time and Space Analysis

	Conclusion and Future Work
	References

