
Proceedings of 10th IOE Graduate Conference
Peer Reviewed

ISSN: 2350-8914 (Online), 2350-8906 (Print)
Year: 2021 Month: October Volume: 10

Congestion Minimization in SDN using Two-phase Heuristic
Algorithm

Tirtha Raj Adhikari a, Shashidhar Ram Joshi b

a, b Department of Electronics and Computer Engineering, IOE, Tribhuvan University, Nepal
Corresponding Email: a tirthaadhikari93@gmail.com , b srjoshi@ioe.edu.np

Abstract
Network update is unavoidable in any legacy as well as SDN frameworks. Undesirable and operational
events like hardware maintenance, link failure, node failure etc trigger network updates. During the update
process although initial and final state may remain consistent, different intermediate links might suffer from
inconsistencies. Number of researches have been successful to prevent inconsistencies which are congestion
free but time consuming. Network updates are frequent and need to be handled in a timely manner allowing
minimum amount of congestion.
We propose Two-phase Heuristic Algorithm in a case of SDN network update mechanism to allow minimum
amount of congestion to get fast network update and achieve maximum utilization of link resources. Main
technique of this particular research is firstly to find the key flow in the network at different flow paths routed
from source,intermediate stages and destinations and to rate limit the key flow allowing maximum flow in the
link to attain its maximum capacity. The network is simulated in Mininet emulator and the flow rules were
modified in the forwarding devices by RYU controller using OpenFlow protocol.The Abilene topology having
11 nodes and 14 links is used. The results showed that if key flow in the network is rate limited then other
flows will have to loose lesser packets resulting low packet loss in total. If we insert optimum number of
intermediate stages during network update from initial to final stage, the amount of packet loss decreases.
Also, our algorithm is used to the case such that important flows can be preserved to some extent.

Keywords
SDN, Network Update, Flow Based, Two-phase Heuristic, Abilene, Congestion Minimization

1. Introduction

Network performance is determined by computational
resources and bandwidth, which are frequently
constrained by high operational costs, frequent node
congestion, and uneven traffic loads. In any SDN
implemented network, as a result of various events
like reconfiguration, need of switch update, link
failure, traffic variations, hardware maintenance,
modifying ACL etc. there exist requirement of
network update often. [1]. This modification of
network states is termed as network update. Switch
updates takes place individually and asynchronously,
ensuing serious congestion problems. SDN is a novel
networking architecture that allows for easier network
management, faster network updates, and better
resource allocation schemes by abstracting the control
plane of SDN from its data plane. To lower network
congestion, network controllers use a preventive
strategy to make centralized decisions including

managing flow tables and resource utilization [2].
Computer networks are no longer limited to LANs
and WANs, due to advances in information and
technology. Data-center networks, need to meet
stringent standards for correctness, availability, and
performance, while they must also be highly flexible,
allowing for quick modifications in scenarios such as
new policies, network problems, or increased traffic.
In the network area, the current problem is to achieve
update of network in such instances in a timely and
consistent way. However, transient congestion and
packet loss are inevitable during the network update
process because of resource and time constraints.
Datacenter network require frequent network
adjustments. SDN being a modern technique to
network system administration, configuration, and
execution, the development of updating mechanisms
with low congestion and little packet loss is a popular
research topic these days.

Pages: 304 – 313

Proceedings of 10th IOE Graduate Conference

2. Related Work

To limit the transient congestion in SDN, one may
have to consider many definite properties, e.g.,
interface limit and calculation times. Primary goal of
congestion minimization is to avoid the bandwidth
violation. No matter whether the flow is utilizing the
rules before or after the update process, the total
amount of flow size must follow capacity constraint of
particular link. The paper [3] analyses the physical
design problems during internet backbone network
construction. A problem is formulated using cost,
performance and the actual survival and also
considering important design factors.
Due to dynamic nature of SDN, network updates are
more frequent and crucial in SDN architecture than in
traditional networks. During the network update, the
controller must meet the performance, security, and
packet-processing tasks. Since, the controller and
forwarding plane are separated in SDN, open-flow
devices react slowly to new rules. Such conditions in
network update leads to inconsistency.The important
work of Mizrahi and Moses [4] demonstrates that flow
swapping is required for network optimization, and
techniques are required to preserve consistency during
network update in SDN.This concept underpins
emerging SDN approaches for reducing transient
congestion. Contemporary algorithmic approaches
use slack capacity or dependency graphs to explain
partial moves.
Reiblatt et al. [5], in their foundational work, present
two abstractions for updating : per-packet and
per-flow consistency. In two-phase commit, flows are
identified with new and old rules, posing a difficulty
for flow ordering. It ensures that the flow is handled
by the old configuration prior to the update or updated
new configuration, not both. It also lowers the
likelihood of loops during updates. Amiri et al. [6]
introduced a congestion-free reconfiguration strategy
for flows of a specific demand in the network from the
current path to the relevant final path. Changing the
forwarding rules at the nodes allows for
reconfiguration from the current path to the new path
while keeping the attributes. It presents a
congestion-free updating plan for unsplittable flows at
the trade-off of increased complexity. The approach of
SWAN [7] makes extensive use of network capacity,
even when traffic volume varies drastically. SWAN
leaves ’scratch capacity’ on links that will not be used
until the time of update. Likewise, zUpdate [2] tries to
reduce congestion in switches by using Equal-Cost

Multi-path Routing (ECMP) to uniformly distribute
traffic among all next hops, allowing redundant paths
to be fully utilized. The only requirement for zUpdate
is that the operator provide the final configuration
without focusing to the update details.SWAN [7] and
zUpdate [2] propose finding a congestion-free
updating scheme in network updates. The update plan
is splited into different phases, each of which requires
altering flow tables on a set of switches, with the
feature that no congestion will occur regardless of the
sequence or time of the updates.It is impossible to
update the network with zero congestion if all of the
links are filled. With the premise that all links have
free capacity (scratch capacity), congestion-free
updates are attainable in [1/s]-1 updates. Scratch
capacity might range from 0% to 50 %. For example,
if all links have 10% free capacity, the congestion-free
updates will require 9 updates. Each update step
includes a set of changes to forwarding rules of
switches, with the quality that no congestion will
occur irrespective of the sequence or time of the
updates. In addition, rather than wasting scratch
capacity, it could be used for background traffic. It
assures that non-background traffic is not interrupted
during transactions, and that background traffic
congestion is bounded. Ultimately, the link capacity is
being used well. Hence, in the cost of the volume of
scratch capacity, a congestion-free update is possible.
Increased scratch capacity leads to faster network
upgrades since updates are done in fewer steps.
However, this lowers the amount of non-background
traffic in the network. Also if the background traffic
demand is low, capacity is wasted. Jin [8] and
Mahajan [9] pioneered the concept of dynamic and
dependency graphs in their study. According to
various run time conditions of switches in the network,
dynamic and dependency graphs are utilized to find a
fast congestion-free update plan. Individual graph
update dependencies are built, with updates being sent
out greedily once the corresponding preconditions are
met. Flows are rate-limited to ensure progress when
this greedy traversal of the dependency graph results
in a deadlock. Jin et al [8], in their research work,
propose a fast and consistent network update scenario
in SDN based on real-time network and switch
characteristics. It depicts a consistency-related
dependency graph of nodes and dependencies, where
nodes represent rule updates and network resources,
and edges reflect dependencies between them. Then,
relying on the run-time variations in the update speeds
of different switches, it proactively schedules these

305

Congestion Minimization in SDN using Two-phase Heuristic Algorithm

updates to ensure consistent updates. Mahajan [9]
proposes two network methods for consistency and
speed plan in his research. A consistency plan is a
directed acyclic graph with nodes representing rule
updates and edges representing dependencies. The
speed plan is determined by the amount of time it
takes for individual switches to implement updates
and the distance between the controller and the
switches. The SDN platform’s primary goal is to
optimize the available resources. However, there is
inefficient utilization of available link capacity in the
network update strategy using scratch capacity.Gandhi
[10] explains that flows have a number of migration
choices. The paper calculates many options and
optimizes the dependency network for the optimum
path and a few intermediate steps. The seminal work
by Brandt et al [11] gives us a new idea that new flow
pathways should not be part of the problem input, but
should instead be computed in conjunction with the
migration plan. This concept leads to a faster
migration approach and the resolution of more
problems.These studies concentrate on maximizing
link capacity utilization, but they do not ensure the
availability of consistent updates, the optimum update
scheme, or the time required for network updates.
Zheng et al [12] proposed a congestion-minimizing
network update in their pioneering paper.
Congestion-free updates have the drawback of not
being able to fully utilize network capacity and is
time-consuming because they require a series of LP
solutions.During network updates, it introduces two
new concepts: the bounded congestion update
problem (BCUP) and the minimum congestion update
problem (MCUP). MCUP seeks to identify the
routing for all intermediate stages such that transient
congestion is reduced, while BCUP aims to determine
the least number of intermediate stages.They have
simulated and analysed rounding algorithm, greedy
algorithm and heuristic algorithm on 8-pod fat-tree
topology.
The important research work done by Hertiana et al
[13] explored at a flow-based routing system in
abilene topology which provide a path based on
bandwidth demand. The purpose of this work is to
provide acceptable QoS while also avoiding network
congestion.The goal of this technique is to discover a
good path by choosing one of the paths with the most
residual bandwidth. This flow based routing is
compared with OSPF routing.

The pioneer research of Zheng et al [14] prove the
hardness of the minimal congestion update problem

(MCUP) and analyse its hardness.They have used two
topologies: fat-tree DCN topology and Microsoft’s
inter-datacenter WAN topology. To discover the
update sequence, they offer an approximation
technique and a greedy improvement algorithm.

In the seminal work of Wen et al [1] flow based
network update and minimization of congestion
impairment is discussed and compared with existing
link based update strategies. The network update
problem is shown as NP-hard and two-phase heuristic
algorithm is proposed, formulated and implemented
on Microsoft’s inter-datacenter WAN topology.

3. Methodology

3.1 Network Update Problem

A directed graph G = (N,E) can be used to describe
any network, in which N symbolizes the set of switches
and E denotes the set of edges/links. The bandwidth
capacity of the links is represented by Bc. F represents
set of flows, for all f belongs to F , Pf denotes the set
of all possible loop-free paths of flow f , Wf denotes
the weight of the flow f and B f represents bandwidth
demand of flow f . M is assumed as the maximum
number of source state, target state and intermediate
stages. In the set, M = {0,1,2,3, ...,m,m+ 1}, the
initial stage is represented by index 0, the final stage
is represented by index m+1 and subset {1,2,3...,m}
represents the intermediate stages.

Figure 1: Key notations of the network model

Flow conservation, demand satisfaction, and capacity
constraints must all be considered when designing a
network model as a directed graph. The following
conditions must be met for the network model
mentioned above:

∑
e∈out(m)

F(e) = ∑
e∈in(m)

F(e),∀m ∈M0,m+1 (1)

306

Proceedings of 10th IOE Graduate Conference

∑
e∈E

F(e) = B f ,∀e ∈ E

F(e)≤ Bc,∀e ∈ E

Furthermore, to avoid policy inconsistency, the two-
phase commit protocol provided in [5] is effective
for retaining packet coherence. In other words, each
packet is forwarded by either the old routing prior to
the update or the new routing after the update, but not
together.

The initial state and final states are initially known,
while intermediate states {1,2,,m} needs to be
determined. Each flow f is associated with bandwidth
demand B f , routed through a possible path p ∈ P(f)
between its source and destination. The path set P(f)
is pre-computed by the SDN controller such that all
paths are loop free for flow f . The flow weight Wf

is determined by the preference application, which
is beyond the scope of this paper. Parameters like:
M,Wf ,Pf ,B f and source and target state are already
defined. For each flow f , it is required to find a feasible
path in set Pf at each intermediate stage, and then
select the key flows that will be limited by a significant
proportion at each migration step. The primary goal
of this operation is to minimize congestion, which is
expressed as a weighted sum:

M

∑
m=0

∑
f∈F

Wf lm, f (2)

Hence, the network update problem can be formulated
as a nonlinear optimization program as below:

minimize
M

∑
m=0

∑
f∈F

Wf lm, f (3)

subject-to:

∑
f∈F

B f be
m, f − ∑

f∈F
lm, f be

m, f ≤ Bc,∀m ∈M,∀e ∈ E

be
m, f =max(∑

p∈P:e∈p
ap

m, f , ∑
p∈P:e∈p

ap
m+1, f),∀m∈M,∀e∈E,∀ f ∈F

∑
p∈Pf

ap
m, f = 1,∀m ∈M{0},∀ f ∈ F

ap
m, f ≥ 0,∀m ∈M{0},∀ f ∈ F,∀p ∈ Pf

lm, f ≤ B f ,∀m ∈M,∀ f ∈ F

The problem represented by equation 3 must follow
congestion less constraint, flow demand constraint,

capacity constraint and non-splittable flow constraints
where lm, f , be

m, f and ap
m, f are decision variables. lm, f

represents the limited volume of flow f when the
network is updated from stage m to m + 1. be

m, f
indicates whether or not flow f passes edge e during
the migration from stage m to m+1. ap

m, f determines
weather flow f chooses path p in stage m or not. ap

m, f
=1 when flow f chooses path p in stage m.

3.2 Two-phase Heuristic Algorithm

Since the formulated problem is NP-hard [14].
According to present data science, optimal solutions
for NP-hard problems cannot be guaranteed in a
reasonable amount of time for problem instances of
practical sizes. [15]. Exact algorithms are not ideal in
terms of practical usability due to their long running
time. The exact solution of problem instances with
massive number of nodes can take many hours, and
there are also problem instances with practical sizes
that can’t be resolved due to memory constraints.
Hence, a two-phase heuristic approach is proposed,
which provides the desired efficiency while also
limiting the running time. The algorithm is divided
into two phases which address congestion duration
and rate limitation individually.

3.2.1 Phase-I: Update Schedule

The phase-I tries to acquire the update schedule by
combining the congestion duration and the overloaded
volume ratio. Because, be

m, f is no bigger than 1,
optimization problem results to MIP. The total
overloaded volume of all migration steps becomes the
objective function, taking into account the congestion
duration and the overloaded volume
The update schedule problem is illustrated as a LP
problem as below:

minimize
M

∑
m=0

∑
f∈F

Wf lm, f (4)

subject-to:

∑
f∈F

D f he
m, f − ∑

f∈F
lm, f ≤ Bc,∀m ∈M,∀e ∈ E

∑
p∈Pf :e∈p

ap
m, f ≤ he

m, f ,∀m ∈M,∀e ∈ E,∀ f ∈ F

∑
p∈Pf :e∈p

ap
m+1, f ≤ he

m, f ,∀m ∈M,∀e ∈ E,∀ f ∈ F

307

Congestion Minimization in SDN using Two-phase Heuristic Algorithm

∑
p∈Pf

ap
m, f = 1,∀m ∈M{0},∀ f ∈ F

ap
m, f ≥ 0,∀m ∈M{0},∀ f ∈ F,∀p ∈ Pf

lm, f ≤ B f ,∀m ∈M,∀ f ∈ F

This problem of Update Schedule can be illustrated in
the form of algorithm as below:

Algorithm 1: Update Schedule Algorithm
Input :Source state, Target state, M, Wf , Pf ,

B f

Output :Routing at each intermediate state,
Key flow f∗

1 Get Solutions ap
m, f from LP 4;

2 for m∗ 1 to M do
3 for each f ∗ in F do
4 path p∗ path p* when the ap∗

m∗, f ∗ is the

maximum item of set ap∗
m∗, f ∗

5 Flow f ∗ is routed through path p∗ at
stage m∗

6 end
7 end

3.2.2 Phase-II: Rate limitation

During each migration of the update schedule,
Phase-II involves limiting of key flows by a some
volume. As soon as the update schedule is calculated,
the rate limitation is required as long as there occur
congestion in each migration step from stage s to
s+ 1. With provided flow demand, weight, source
routing and target routing , we need to determine the
optimal rate limitation technique such that the
weighted sum represented in equation 5 is highest.

∑
f∈F

Wf v f (5)

The rate limitation problem is formulated as LP as
below:

maximize ∑
f∈F

Wf v f (6)

subject-to:

∑
f∈F

v f K f ,e ≤ Bc,∀e ∈ E

v f ≤ B f ,∀ f ∈ F

The decision variable K f ,e which determines weather

flow f passes through edge e at initial state or final
state can only be 1 or 0. v f is the assigned bandwidth
for flow f . As long as flow f passes through edge e at
initial or final state, K f ,e is 1. The allocated bandwidth
of each f should not higher than demand value to meet
condition for no congestion. Also, the allocated
bandwidth v f of each flow f should not be higher than
demand value B f .This problem of rate limitation can
be illustrated in the form of algorithm as Algorithm
2.

Algorithm 2: Rate Limitation Algorithm
Input :Source state and Target state, M, Wf ,

Pf , B f

Output :Rate limitation for flows during each
migration

1 Get Key flow f ∗ from Algorithm 1;
2 Set source stage as stage 0
3 Set target stage as M+1
4 for m∗ = 1 1 to M do
5 for each f ∗ in F do
6 LP equation 6, set path of flow f ∗ at

stage m∗ as the source path of flow
f ∗

7 LP equation 6, set path of flow f ∗ at
stage m∗+1 as the source path of
flow f ∗

8 end
9 Solve LP 6 and result is the rate limitation

during migration from stage m to m+1
10 end

4. Experimental Setup

The test network topology is implemented under
Linux, using Mininet software to emulate the network,
the RYU controller to add the flow tables in the
Openflow switches. Python programming language is
used to write the algorithm scripts and iperf3 tool is
used for analysing network performance. The Abilene
topology consisting of 11 open-flow switches and 14
interconnected links between them as shown in figure
2 is used for simulation. We set 70 Mbps bandwidth
for each of those links.

We assume 5 simultaneous flows between 10 hosts as
illustrated in table 6.2. We take link bandwidth to be
70 Mbps and flow bandwidth as 25Mbps and run each
iteration for 1 minute. We take five iterations and take
their average to make our result more accurate.

308

Proceedings of 10th IOE Graduate Conference

Flow Initial Path Final Path Host Pair Flow Weight
F1 S1→ S2→ S3→ S4→ S8 S1→ S2→ S3→ S9→ S8 h1-h6 2
F2 S2→ S3→ S4→ S8 S2→ S3→ S9→ S8 h3-h7 10
F3 S1→ S2→ S3→ S9 S1→ S11→ S10→ S9 h2-h9 2
F4 S3→ S4→ S8 S3→ S9→ S8 h4-h8 10
F5 S4→ S3→ S9 S4→ S8→ S9 h5-h10 10

Table 1: Flow Set for the Abilene topology

Figure 2: Abilene Topology

5. Results and Discussion

This section discusses the simulation results obtained
and compare the different scenarios. To minimize the
probable margin of errors, each measurement has been
executed several times and an average is taken.Those
results are presented as graphical and/or tabular form
for easier observation of the results.

5.1 Weight-Identical Flows

Initially, we take the scenario where all the flows have
the same weight of 10 unit. Then packet loss ratio of
the network and each individual 5 flows are calculated
up to two intermediate stages. In the figure The x-axis
represents flows before and after the run of algorithm.
The y-axis show the averaged packet loss ratio (%) of
the five flows before and after the run of algorithm.

Even without inserting intermediate stages between
the initial and final stages, we can see a significant
improvement in packet loss of flows after the algorithm
is executed. After the run of algorithm, the key flow
seems to be the F3 having higher loss and average
packet loss ratio decreases from 6.5%(average before)
to 4.63 % (average after). The comparative bar chart
diagram is shown in figure 3.

The packet loss of flows at various intermediate stages
is depicted in the figure 4.When M=0, flow F3 has the
key loss and flow F1, F2 and F4 also has comparatively

Figure 3: Comparative packet loss ratio of flows
before and after the run of algorithm

higher loss F5. Flow F5 has the negligible packet
loss ratio because it has no overlapping flows in the
associated link. Similarly, when M=1 and M=2 the
key loss is in the flow F1 and F2 respectively leaving
other flows with lesser packet loss ratios. As can be
seen, the key flow with a higher packet loss ratio may
change based on the intermediate stages. However, the
pattern of having a lower packet loss ratio continues
even in two intermediate stages.

5.2 Weight-Differential Flows

The performance of the network for flows with
varying importance weight as shown in the table 1 is
also evaluated. Packet loss ratios of flows at different
intermediate stages and their average is shown in
figure 5. In this scenario the key flow is F1 for all
intermediate stages M=0,1 and 2. Flow F5 has no any
loss because it do not share flow path with other
flows.Flow F2 and F4 has comparatively lower loss
than F1 and F3 which proves the role of flow
importance in prioritizing the flows. Hence,we can
conclude that those flows having higher importance
have the lower packet loss ratios and also the packet
loss ratio decreases with the insertion of intermediate
stages when migrating from initial to final stage.
From the figure we can observe that average packet

309

Congestion Minimization in SDN using Two-phase Heuristic Algorithm

(a) M=0 (b) M=1

(c) M=2 (d) Average of all M

Figure 4: Packet loss ratios of identical weight flows at different intermediate stages M

310

Proceedings of 10th IOE Graduate Conference

(a) M=0 (b) M=1

(c) M=2 (d) Average of all M

Figure 5: Packet loss ratios of differential weight flows at different intermediate stages M

311

Congestion Minimization in SDN using Two-phase Heuristic Algorithm

loss ratio of weight identical flows and weight
importance flows seem similar though importance
factor is introduced.

5.3 Update Time

In order to visualize the time delay caused by the
insertion of intermediate stages, we calculate the time
difference between the start and end of the update
process. The results, as shown in the figure 6, reveal
that as the number of intermediate states in the update
process grows, so does the time it takes to complete
the update for both identical-weight and
differential-weight situations.

Figure 6: Update time at different intermediate stages
M

6. Conclusion and Future Works

The Two-phase heuristic algorithm minimizes the
congestion during network update while also
conserving important flows. In both identical-weight
as well as differential-weight flow cases, inserting the
number of intermediate stages while moving from the
initial to the final state, lowers the packet loss ratio.
On the other hand, along with the increase in number
of intermediate stages, the time to achieve update also
increases. Also, important flows can be preserved to
some extent.
To minimize the unavoidable transient congestion
during network update, we proposed and tested a
Two-phase Heuristic algorithm that comprises two
distinct phases: update schedule and rate limitation.
Update schedule phase aims to find the key flow in the
network by analysing the flows in all paths of source
state and intermediate stages, while rate limitation
phase limits the key flow such that overall packet loss

can be minimized. The Two-phase Heuristic
algorithm not only minimizes packet loss ratios but
also preserves essential flows, as per the results. The
key flow was limited in weight-identical flows, but the
priority wise limitation of flows occurred in
weight-differential flows.

One of the problem that this research can be extended
to is determining the number of intermediate phases.
Inserting many number of intermediate stages may
result in a higher packet loss ratio. So, research could
focus on determining the best time and optimum
number of intermediate stages for a given bounded
congestion which completes and automates this
technique. Updating the SDN network based on user’s
desire makes update process flexible and more
customized. Another study could be pursued in the
future is the search for a dynamic flow-based network
updating mechanism based on dependency graphs
allowing flows to be transferred back and forth
frequently.

Acknowledgments

The authors would like to express their gratitude to the
Department of Electronics and Computer Engineering,
Pulchowk Campus, IOE, TU, for all of their help and
assistance during this research.

References

[1] Chaozhun Wen, Peng Yang, Qiong Liu, Jingjing
Luo, and Li Yu. Minimizing congestion impairment
of network update in sdn: A flow-based solution.
In 2018 10th International Conference on Wireless
Communications and Signal Processing (WCSP),
pages 1–6, 2018.

[2] Hongqiang Liu, Xin wu, Ming Zhang, Lihua Yuan,
Roger Wattenhofer, and David Maltz. zupdate:
Updating data center networks with zero loss.
volume 43, 08 2013.

[3] Xuezhou Ma, Sangmin Kim, and Khaled Harfoush.
Towards realistic physical topology models for
internet backbone networks. In 2009 6th International
Symposium on High Capacity Optical Networks and
Enabling Technologies (HONET), pages 36–42, 2009.

[4] Tal Mizrahi and Yoram Moses. On the necessity of
time-based updates in SDN. In Open Networking
Summit 2014 (ONS 2014), Santa Clara, CA, March
2014. USENIX Association.

[5] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for
network update. SIGCOMM Comput. Commun. Rev.,
42(4):323–334, August 2012.

312

Proceedings of 10th IOE Graduate Conference

[6] S. A. Amiri, S. Dudycz, S. Schmid, and
S. Wiederrecht. Congestion-free rerouting of flows
on dags. In ICALP, 2018.

[7] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger
Wattenhofer. Achieving high utilization with software-
driven wan. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13,
page 15–26, New York, NY, USA, 2013. Association
for Computing Machinery.

[8] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi,
Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Jennifer Rexford, and Roger Wattenhofer. Dynamic
scheduling of network updates. SIGCOMM Comput.
Commun. Rev., 44(4):539–550, August 2014.

[9] Ratul Mahajan and Roger Wattenhofer. On consistent
updates in software defined networks. In Proceedings
of the Twelfth ACM Workshop on Hot Topics in
Networks, HotNets-XII, New York, NY, USA, 2013.
Association for Computing Machinery.

[10] Rohan Gandhi, Ori Rottenstreich, and Xin Jin.
Catalyst: Unlocking the power of choice to speed
up network updates. In Proceedings of the 13th
International Conference on emerging Networking
EXperiments and Technologies, CoNEXT 2017,
Incheon, Republic of Korea, December 12 - 15, 2017,
pages 276–282. ACM, 2017.

[11] Sebastian Brandt, Klaus-Tycho Foerster, and Roger
Wattenhofer. Augmenting flows for the consistent
migration of multi-commodity single-destination
flows in sdns. Pervasive and Mobile Computing, 36,
04 2017.

[12] Jiaqi Zheng, Hong Xu, Guihai Chen, Haipeng Dai,
and Jie Wu. Congestion-minimizing network update
in data centers. IEEE Transactions on Services
Computing, 12(5):800–812, 2019.

[13] Sofia Naning Hertiana, Hendrawan, and Adit
Kurniawan. Performance analysis of flow-based
routing in software-defined networking. In 2016 22nd
Asia-Pacific Conference on Communications (APCC),
pages 579–585, 2016.

[14] Jiaqi Zheng, Hong Xu, Guihai Chen, and Haipeng
Dai. Minimizing transient congestion during
network update in data centers. In 2015 IEEE
23rd International Conference on Network Protocols
(ICNP), pages 1–10, 2015.

[15] Bin Chen and Guangri Quan. Np-hard problems of
learning from examples. In 2008 Fifth International
Conference on Fuzzy Systems and Knowledge
Discovery, volume 2, pages 182–186, 2008.

313

	Introduction
	Related Work
	Methodology
	Network Update Problem
	Two-phase Heuristic Algorithm
	Phase-I: Update Schedule
	Phase-II: Rate limitation

	Experimental Setup
	Results and Discussion
	Weight-Identical Flows
	Weight-Differential Flows
	Update Time

	Conclusion and Future Works
	Acknowledgments
	References

