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Abstract
Distributed systems typically consist of several nodes connected together for handling search operations. Data
is divided into those nodes for the purpose of parallel processing and replications. Elasticsearch is the popular
distributed search engine where data is organized into indices. Each index of Elasticsearch consists of one or
more shards and those shards can be distributed over different nodes. When a search operation is performed
on a particular index, sending the search requests to all the related shards distributed over different nodes
might result in high latency especially when the size of the cluster is large and nodes are far apart. Shard
Selection is the technique that attempts to forward the query to the highly relevant shards discarding other
non-relevant shards and thus decreasing the latency. Shard selection comes with the cost of relevance, it’s
obvious that the application of the shard selection algorithm might decrease the query relevance. There are
several shard selection algorithms developed time and again. Among them, ReDDe, Sushi, and Rank-S are
very popular. In this paper, implementation of those three algorithms, performance analysis along with the
optimization of shard-related parameters are done.
The experimentation is performed using Insider Threat Test Dataset(CERT V6.2) collected from Carnegie
Mellon University site. In terms of average latency, Rank-S is performing 14.92% and 9.83% better than
SUSHI and ReDDe respectively. Similarly, in terms of Average Document Score, Rank-S is performing 21.68%
and 5.488% better than SUSHI and ReDDe respectively.
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1. Introduction

Parallel processing is the core of any distributed
system. To perform parallel processings, a distributed
system consists of several nodes linked across a
network. To increase the performance of the
distributed system, data is divided into chunks across
those nodes which are called shards. Hence, sharding
is the technique to divide the data into chunks creating
partitions of the data and distributing it across the
nodes for the purpose of parallelism and replications
[1].

Elasticsearch is one of the distributed, Lucene-based,
scalable, open-source search engines where sharding
is used. It is capable of performing RESTful CRUD
operations in a distributed manner for a huge amount
of data.

Shard is the core of the distributed system of
Elasticsearch. There are two types of shards in
Elasticsearch: primary shard( commonly referred to

as Shard) and replica shard( commonly referred to as
Replica). Each shard is a single Lucene Index of
Elasticsearch.

Each document of the Elasticsearch belongs to a
primary shard whereas a replica shard is the copy of
the primary shard. Elasticsearch is actually a grouping
of one or more shards and the shard is actually a
self-contained index.

Figure 1: Figure showing the distribution of primary
and replica shards of an index over different nodes
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Shard selection is one of the optimization techniques
for distributed search engines like Elasticsearch. The
key concept of the shard selection technique is to
process the user query only to the shard that contains
relevant user documents while ignoring others. Shard
selection typically consists of the concept of broker
nodes and data nodes. A data node stores data,
process search queries and return the relevant
document. Each data node contains one or more
shards. A broker node is responsible for receiving the
search query from a user, re-routing the query to the
appropriate data nodes, receive the result from those
nodes, combine and return it to the user. The concept
of Shard Selection is shown in the figure 2.

Figure 2: A schematic show of Shard Selection
Problem

A proper shard selection will discard Node A and Node
C, since shards in both of the nodes contain little or
no relevant document and route the query only toward
Node B.

When using the shard selection technique, the search
relevance might be negatively impacted because some
shard results might be lost due to the shard selection.
Also, the shard selection process might be based on
user requirements. For example, User A might need
fast search results compromising some relevance in the
data while User B might need high relevant data even
though search time is slow. This research is an attempt
to implement, analyze and optimize different Shard
Selection along with the optimization of shard-related
Elasticsearch parameters.

2. Literature Review

Scaling and Optimization of Distributed Systems and
Big Data Technology [2, 3, 4] has been the major topic
of interest since the early 90s. Among those, Shard
related optimization is one of the major interests in the
distributed system. Hence, many researches are being
performed in a distributed search engine for the shard
selection. For instance, the query-routing approach [5]
is one of them. This approach explains how a query is
routed to nodes for the relevant retrieval of the results.

There are many shard selection algorithms proposed
till now. Collection Retrieval Inference Network
(CORI) [6] was considered to be the first successful
shard selection algorithm among them introduced in
the mid-90s. It is based on Lexicon algorithms and
based on a probabilistic model for information
retrieval called a Bayesian network. Bayesian
networks have been refined a lot since then.

HighSim [7] is considered as the best algorithm among
a range of lexicon shard selection algorithms. It is an
optimistic assumption-based algorithm. It assumes
that a single document of the shard might contain all
the terms from a query.

Other different types of algorithm than Lexicon
Algorithms are the Surrogate algorithms [7, 8]. It was
developed originally to work in distributed
uncooperative search engines.

Best-N algorithm [8] is one of the Surrogate algorithms
where the goodness for each term is calculated for each
document.

Another surrogate algorithm developed for an
uncooperative environment is ReDDE [9]. This
algorithm is considered as benchmark for the shard
selections. In this algorithm, a centralized index
called CCI at the broker node is formed which
contains sampled documents from all the shards in the
data node. When a query from the user arrives at the
broker node, estimation is done on the number of
documents relevant to the query of each shard, and
shards are ranked accordingly. The number of
documents relevant is given in the equation 1.

Rel(Si,q) = ∑
d∈si sampl

P(Rel|d)× |si|
|si sampl|

(1)

Rel(Si,q) = Number of document relevant to query q
in shards document-collection Si
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q = query performed
P(Rel|d) = The estimated probability of relevance for
document d to query q in CCI
Si sampl = set of sample document from shard Si

The central rank of the document is approximated
using the formula given in the equation 2.

rank central(di)= ∑
rank samp(d j)<rank samp(di)

|S j|
S j sampl

(2)

P(Rel|d) is calculated as given in the equation 3.

P(Rel|d)=

{
γ, if rank central(d)< β ×|Si|.
0, otherwise.

(3)

And, the estimated relevance of given shard Si on query
q can be found with the goodness-score as given in the
equation 4.

goodness(Si,q) =
Rel(Si,q)
∑ j R(S j,q)

(4)

Scoring Scaled Samples for Server Selection (Sushi)
[10] is one of the latest surrogate algorithms. Sushi
rank shards according to the centralized sample index
based on two steps Rank adjustment and curve-fitting.
The Rank Adjustment formula for Sushi is given in the
equation 5.

rank ad justed(d) = (rank sample(d)+0.5)× |c|
|Sc|
(5)

Which shows the ratio of the size of the shard they
belong to i.e. |c| to the size of the sample from that
shard |Sc|.

SHiRE [11] is another surrogate algorithm concept
that utilizes a centralized sample index (CSI). In these
algorithms, a bottom-up traversing hierarchy is
followed for shard ranking. Voting to the shard is
performed when a document is fetched from the shard.
The formula for voting is given in the equation 6.

Vote(d) = S×B−U (6)

S = score of the document given from the CSI ranking
B = exponential base
U = level at which the document was found in the
hierarchy

In the Lexicon SHiRE (lex-s), the concept of lexical
similarity between sample documents is used. It uses
similarity to construct the hierarchy. On the other hand,
in the Connected SHiRE (conn-s), shard-membership
of the documents is used to construct the hierarchy.

Ranked SHiRE (rank-s) is considered the simplest
hierarchy among the SHiRE family.

Some of the earlier research was done focusing on the
performance and optimization of the above algorithms.
In the paper [12], comparative performance analysis is
done using Redde, Rank-s, and CORI shard selection
algorithms. In the paper [13], a shard selection plugin
called SAFE was developed that takes and analyzes
ReDDe, HighSim, Sushi, and Rank-S to improve the
performance. In the paper [14], resource selection,
score normalization, and result merging techniques
for small documents are analyzed. In the paper [15], a
quantitative model of shard, placement strategy of the
shard, and local balancing were considered for the
optimization. Similarly, in the paper [16], a similar
approach for Auto-Sharding is done on another
NoSQL technology MongoDB.

3. Methodology

The research is an approach to analyze and optimize
the existing shard selection algorithm along with the
shard-related parameters. The work involves the
implementation, analysis, and optimization of existing
three popular shard selection algorithms namely
called ReDDE, Sushi, and Rank-S along with
shard-related parameters.

3.1 Data Set

Table 1 shows the datasets of Insider Threat Test
Dataset(CERT V6.2) collected from Carnegie Mellon
University are used for the experimentation purpose.

Table 1: Datasets for experimentation and parameter
optimizations

File Name Row Count Data Size
email.csv 10994958 8.1 GB
http.csv 117025217 90.2 GB

Similarly, Shakespeare’s play dataset used in the
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paper [12] is collected from the kaggle for validation
purpose.

Table 2 shows the description of the dataset used for
the validation.

Table 2: Datasets for validation

File Name Row Count Data Size
Shakespeare data.csv 111397 10.2 MB

3.2 Parameters

Table 3 shows parameters that are used. They are
initialized with the default values and updated during
the process to get optimum parameters. The
parameters directly affect either latency or document
score or both of the Elasticsearch.

Table 3: Elasticsearch Parameters

Parameter Description
index.number of shards number of primary

shards of an index
index.number of replicas number of replicas

of each primary
shard

K maximum number
of shards allowed
to select by a
shard selection
algorithm

indices.memory.index buffer size allocation of heap
memory
(percentage or
byte size)

3.2.1 Number of primary shards

It is the number of primary shards allocated for an
Elasticsearch index. It has a direct impact on search
latency.

3.2.2 Number of replicas

It indicates how many copies of the primary shard we
allocate. For example, if we have 10 primary shards
and 1 replica shard, we will have 20 shards in total. It
has a direct impact on search latency.

3.2.3 Maximum Number of shards allowed to
select

It is the maximum number of shards (among total
primary and replica shard) which a shard selection
algorithm can select. It has a direct impact on both
search latency and document score.

3.2.4 Heap Memory Allocation

The heap memory is the amount of RAM allocated
to the JVM of an Elasticsearch node. Heap memory
allocation has a direct impact on search latency.

Impacts of above parameters are discussed in details
on section 4.

3.3 Indexing and Searching

Data is indexed to Elasticsearch via logstash. The
fields that need to be queried using the shard selection
algorithm need to be specified in the configuration of
the node. The algorithm only supports string fields. A
precomputed CSI is processed using those fields
during the sync operation between data nodes and
broker nodes. Standard Analyzer is used for the
experimentation process.

While searching using those specified fields, the CSI
is again computed against the query to estimate and
route to the relevant shards.

For searching, full-text searches are performed using
Match Query on indices http and email to get the
relevant documents. Match query is chosen because it
is what mostly used in the full text searches. Several
queries are executed for experimentation purposes.
Following is an example of a query:

Query Type: Match Query
Query Index: http
Field Queried: content
Search String: “players coaches”

3.4 Architecture Design

An Elasticsearch cluster consisting of ten data nodes
and two coordinating nodes(acting as broker nodes) is
designed. For the experimentation purpose, as
mentioned, the above two indices namely email and
http are set such that each node contains a primary
shard and a replica shard of both indices.

The architecture design is shown in the figure 3.

51



Performance Analysis of Shard Selection Techniques on Elasticsearch

Figure 3: System Architecture Design for the
implementation of Shard Selection Algorithms

3.5 Evaluation Metrics

Following are the evaluation metrics that are used to
evaluate the shard selection algorithms.

1. Document Score

2. Query Latency

3. Precision at K (P@K)

4. Recall at K (P@K)

4. Results and Discussion

4.1 Experimental Setup

All the experiments were carried out in AWS
Elasticsearch servers.

Table 4 shows the server description for the
experimentation purpose.

Table 4: AWS Elasticsearch Server specification for
the experimentation

Instance Type Memory
(GiB)

No. of
Data

Nodes

No. of
Broker
Nodes

r5.large.elasticsearch 16 10 2

Table 5 shows the server description for the validation
purpose.

Table 5: AWS Elasticsearch Server specification for
the validation

Instance Type Memory
(GiB)

No. of
Data

Nodes

No. of
Broker
Nodes

c6g.large.elasticsearch 4 5 1

4.2 Experimental Results and Discussion

The search query latency for different algorithms is
shown in the figure 4.

Figure 4: Latency (ms) against Maximum number of
shards allowed to select for different shard selection
algorithms

As the maximum number of shards the algorithm
allowed to select increased, the latency is increasing.
It is because the broker node has to reach the extra
shard distributed over the data nodes. Rank-S is
performing the best and SUSHI worst in term of
latency

The average document score for different algorithms
is shown in the figure 5.

Figure 5: Average Document Score against
Maximum number of shards allowed to select for
different shard selection algorithms

As the maximum number of shards the algorithm
allowed to select increased, the average Document
score is increasing. It is because the broker node can
select more relevant data from more shards. Rank-S is
performing best and SUSHI worst in term of average
document score.

Precision and Recall are calculated in reference to
the relevant documents and retrieved documents in
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default search when no shard selection algorithm is
applied. Precision@10, Precision@30, Recall@10,
and Recall@30 for the query are shown in the Figure
6, Figure 7, Figure 8 and Figure 9 respectively.

Figure 6: Precision@10 against Maximum number of
shards allowed to select for different shard selection
algorithms

Figure 7: Precision@30 against Maximum number of
shards allowed to select for different shard selection
algorithms

Figure 8: Recall@10 against Maximum number of
shards allowed to select for different shard selection
algorithms

Figure 9: Recall@30 against Maximum number of
shards allowed to select for different shard selection
algorithms

For the Precision@10 and Recall@10, the top 10
documents are selected whereas for Precision@30 and
Recall@30, the top 30 documents are considered.
This works well because the users are mostly
interested in top results from the query search. The
recall and precision are improving as the maximum
number of shards the algorithm allowed to select
increased. It is because the broker node can get more
relevant documents from more shards. Rank-S is
performing best and SUSHI worst in terms of all the
metrics.

The reason RankS performing better than all the
algorithms is due to the extra step of voting by the
document to the shard it was fetched from. The reason
for SUSHI performing worst is still in the inspection
and need to be analyzed using other data sets.

Along with the Shard Selection Algorithm, different
shard-related parameters are analyzed and optimized.
One of them is a maximum number of shards allowed
to select by a shard selection algorithm which is shown
in the given results.

Another parameter is the heap memory, the correlation
for the Latency and Heap Memory for 16 GB memory
and 122 GB memory nodes are shown in the figure 10
and figure 11 respectively.

Figure 10: Latency (ms) against Heap Memory(GB)
on the node having 16 GB memory
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Figure 11: Latency (ms) against Heap Memory(GB)
on the node having 122 GB memory

Heap memory seems to work fine if used less than half
of the available memory or less than 31 GB, whichever
is less. JVM Heap size above 31 GB seems to increase
latency drastically. So, it’s better to avoid it. Also, the
heap memory allocation depends largely on required
operations.

Another parameter to consider is the number of shards.
Shard could be primary shard or replica shard. Here
the number of replica used for each shard is 1. It means
out of 2x shards, x shard is primary shard and x shard is
replica shard. The relationship between search latency
and the number of shards is given in the figure 12 and
figure 13 for 25 GB Heap Memory and 15 GB heap
memory respectively.

Figure 12: Latency (ms) against Number of shards on
the node with 25GB Heap memory

Figure 13: Latency (ms) against Number of shards on
the node with 15GB Heap memory

The number of shards decreases the latency up to
certain points, but after that, the number of shards
becomes the overhead. Also, the Number of shards
should be chosen according to the heap size of the

Elasticsearch node. The higher the heap size, the
higher could be the maximum number of shards
chosen.

5. Validation Results and Discussion

Tables 6 and 7 show the average value of the validation
results obtained performing the search operations. The
validation is done in a different set of data, queries, and
server configuration than that of the experimentation.

Table 6: Table showing average value of the
validation results obtained from three queries

Methods Search Latency
(ms)

Average
Document Score

RankS 23 4.32
ReDDe 25 3.45
SUSHI 26 3.65

As shown in table 6, Rank-S is performing best in
terms of search latency and average document score.

Table 7: Table showing average value of the
validation results obtained from three queries

Methods P@10 P@30 R@10 R@30
RankS 0.74 0.72 0.57 0.67
ReDDe 0.59 0.62 0.59 0.57
SUSHI 0.61 0.65 0.62 0.59

As shown in table 7, Rank-S is also performing best
in terms of Precision@10, Precision@30, Recall@10
and Recall@30.

6. Conclusion

Existing shard selection algorithms SUSHI, ReDDe,
and Rank-S are implemented and analyzed in
Elasticsearch along with the optimization of
shard-related parameters.

As shown from the above results, more the number of
shards allowed to select more is the Document Score,
Precision, and Recall at the cost of the more Latency.
This is because the broker node has to work on extra
shard gaining extra information about a given query at
the cost of more time and resources.

From the above experiments, in terms of average
latency, considering overall queries and the maximum
number of shards allowed to select, Rank-S is
performing 14.92% and 9.83% better than SUSHI and
ReDDe respectively.
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In terms of Average Document Score, considering
overall queries and the maximum number of shards
allowed to select, Rank-S is performing 21.68% and
5.488% better than SUSHI and ReDDe respectively.

Also, a relationship between heap memory and
latency is established. An increment of Heap memory
decreases the latency up to a certain limit. Heap
memory above certain increases latency drastically.
Also, the heap memory allocation depends largely on
required operations.

Also, a relationship between the number of shards and
latency is established. The number of shards decreases
the latency up to certain points, but after that, the
number of shards becomes the overhead. Also, the
Number of shards should be chosen according to the
heap size of the Elasticsearch node. The higher the
heap size, the higher could be the maximum number
of shards chosen.
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