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Abstract
Acoustic feedback is a major problem in most of the hearing aid users. This feedback corrupts the speech signal
and causes instability. In this paper, we propose a solution for the suppression of continuous acoustic feedback
in the digital hearing aids. In the proposed method, two adaptive filters work in tandem to mitigate the acoustic
feedback. The error signal of the first adaptive filter is used as a desired response for the second adaptive filter
and the filter weights are adapted using the proposed modified Normalized Least Mean Square (NLMS) algorithm.
Due to the correlation between input and desired response, a bias is found in the adaptive filter’s estimate of the
feedback path. An appropriate delay is inserted at the output of the hearing aid to reduce this bias. Based on this
delay based processing, a new strategy is proposed to exchange the weights between the two adaptive filters.
Computer simulations are performed and the results verify the effectiveness of the proposed method.
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1. Introduction

Hearing loss is one of the most prevalent chronic health
conditions, affecting large number of world’s population.
Because of the increased exposure to noise in daily life,
this number is expected to further increase in the future.
Therefore it is necessary to amplify the perceived sound
signal and also reduce the background noise with respect
to the desired speech signal. Hearing aid, a small ampli-
fying device which fits on the ear, worn by a partially
impaired person, is used for this purpose. As hearing
aids become smaller and smaller, acoustic feedback, i.e.,
the acoustic coupling between the loudspeaker and the
microphone of the hearing aid, poses a major problem
to hearing aid users. Acoustic feedback results in se-
vere distortion of the desired signal and howling if the
hearing aid gain is increased. As a result, the maximum
amplification that can be used in a commercial hearing
aid is often too small to compensate for the hearing loss
in a patient.[1]

A generic digital hearing aid system is shown in Fig.
1, where G(z) represents the forward path of the hear-
ing aid and comprises all signal processing for noise

reduction and signal amplification, and s(n) is the de-
sired input signal to be processed by G(z). Assume that
the components for the adaptive feedback cancelation
(AFC) (shown in a dashed box) are not present, and
hence, u(n) = x(n). The input signal x(n) picked up
by the microphone is processed by G(z) and the output
signal y(n) is generated. The output signal y(n) to the
loudspeaker is not only propagated to the user ear, but is
also fed back via acoustic feedback path F(z) to the in-
put microphone thus generating a corrupted input signal
u(n) = x(n) = s(n)+y f (n), where y f (n) is the feedback
component due to the output y(n).

Figure 1: A simplified block diagram of hearing aid
employing NLMS algorithm-based conventional
adaptive filtering approach for AFC



Proceedings of IOE Graduate Conference, 2015

A literature review shows that a number of approaches
have been proposed to solve the problem of acoustic
feedback [1, 2, 3, 4, 5, 6]. The most successful approach
is based on adaptive filtering as shown in Fig. 1, where
W (z) is adapted (usually by the normalized least mean
square (NLMS) algorithm [7]) to model F(z). It is ev-
ident from Fig. 1 that the input y(n) and the desired
response x(n) to W (z), are correlated with each other.
This scheme, therefore, cannnot be used for continuous
AFC [8], and hence the acoustic feedback cannot be
estimated accurately. A simple approach to decorrelate
these two signals is to use an appropriate delay either
in the cancelation path [1] or in the forward path [9],
however, it degrades the speech quality.

Another solution is to filter the error and/or input signal
of W (z), through appropriate decorrelation filters, before
being used in the update equation of the NLMS algo-
rithm [10], resulting in the so-called Filtered-x adaptive
algorithm. It is not, however, easy to design an appro-
priate decorrelation filter [11]. Yet another solution is
a non continuous adaptation or an open-loop algorithm
in which the hearing aid forward path is broken and a
probe noise is injected during particular intervals, for
example, when howling is detected by an appropriate
oscillation detector [12]. The ON/OFF switching of the
probe signal produces annoying effects to the hearing
aid user.

Working principle of the different AFR subsystems in
the proposed hearing aid model has been dealt in [13,
14, 15]. These subsystems adapt the feedback-reduction
FIR filter based on the LMS algorithm or a filtered ver-
sion of this algorithm, i.e., the FXLMS. Moreover, the
normalized versions of both algorithms (i.e., NLMS and
NFXLMS) are also proposed to adapt.

2. Problem with the Existing System

Acoustic feedback in hearing aids occurs when the aid’s
receiver produces an acoustic signal that leaks back to
the microphone. Feedback usually results from leakage
from the ear canal via a vent or from mechanical cou-
pling of receiver motion via the hearing aid housing. Al-
though there are a number of signal-processing elements
involved, for present purpose the essence of the problem
can be pictured as in Fig. 1, where H represents the
net feedback path and G represents the intended transfer

function of the hearing aid. The transfer function of this
system is:

H(z) =
G(z)

1−G(z)F(z)

which shows that due to acoustic feedback the hear-
ing aid will be unstable if G(z) is large enough so that
G(z)F(z) = 1 at some frequency. Stated differently,
when a frequency component of the feedback signal
arrives at the microphone in phase with and with mag-
nitude equal to or greater than the sound that produced
it, oscillation will occur, driving the hearing aid at its
maximum level and rendering it useless. The conditions
for oscillation in hearing aids are common. Consider the
NLMS-algorithm-based conventional method as shown
in Fig. 1. The signal pricked up by the input microphone,
s(n) , is given as:

x(n) = s(n)+ y f (n) (1)

where y f (n) = f (n) ∗ y(n) is the feedback component
due to the output signal y(n) , * denotes linear convolu-
tion and f (n) represents the impulse response of F(z) .
The error signal for W (z) is generated as:

e(n) = x(n)− yw(n) = s(n)+ y f (n)− yw(n) (2)

which is also used as an input to the hearing aid pro-
cessing unit G(z) , i.e., u(n) = e(n) . The coefficient
vector for W (z) , w(n) = [wo(n),w1(n), .....,wL−1(n)]]T

, is updated using the NLMS algorithm as

w(n+1) = w(n)+
µ

yT (n)y(n)+δ
g(n)y(n) (3)

where µ is step-size for W (z) , and δ is a small posi-
tive constant to avoid division by zero. Ideally, W (z) is
expected to generate a replica of y f (n), so that x(n) =
e(n)≈ s(n) . However, the input and desired-response
signals of G(z) , y(n) and x(n) , respectively, are cor-
related with each other and would result in a biased
convergence, i.e., u(n) = e(n)→ ZERO.

3. Theoretical Background

3.1 Adaptive Filtering

A filter is designed and used to extract or enhance the
desired information contained in a signal. An adaptive
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filter is a filter with an associated adaptive algorithm
for updating filter coefficients so that the filter can be
operated in an unknown and changing environment. The
adaptive algorithm determines filter characteristics by
adjusting filter coefficients (or tap weights) according to
the signal conditions and performance criteria (or quality
assessment). A typical performance criterion is based on
an error signal, which is the difference between the filter
output signal and a given reference (or desired) signal.

As shown in Fig. 2, an adaptive filter is a digital filter
with coefficients that are determined and updated by an
adaptive algorithm. Therefore, the adaptive algorithm
behaves like a human operator that has the ability to
adapt in a changing environment. For example, a human
operator can avoid a collision by examining the visual
information (input signal) based on his/her past experi-
ence (desired or reference signal) and by using visual
guidance (performance feedback signal) to direct the
vehicle to a safe position (output signal).

Adaptive filtering finds practical applications in many
diverse fields such as communications, radar, sonar, con-
trol, navigation, seismology, biomedical engineering and
even in financial engineering. The high-order filter to-
gether with a highly correlated input signal degrades
the performances of most time-domain adaptive filters.
Adaptive algorithms that are effective in dealing with ill-
conditioning problems are available; however, such algo-
rithms are usually computationally demanding, thereby
limiting their use in many real-world applications.

Figure 2: Basic Functional Blocks of an Adaptive Filter

3.2 Adaptive transversal filters

An adaptive filter is a self-designing and time-varying
system that uses a recursive algorithm continuously to
adjust its tap weights for operation in an unknown envi-
ronment. Fig. 3 shows a typical structure of the adaptive

filter, which consists of two basic functional blocks:

1) a digital filter to perform the desired filtering and
2) an adaptive algorithm to adjust the tap weights of

the filter

The digital filter computes the output y(n) in response
to the input signal u(n), and generates an error signal
e(n) by comparing y(n) with the desired response d(n),
which is also called the reference signal, as shown in Fig.
2. The performance feedback signal e(n) (also called the
error signal) is used by the adaptive algorithm to adjust
the tap weights of the digital filter. The digital filter
shown in Fig. 3 can be realized using many different
structures. The commonly used filter is a transversal or
finite impulse response (FIR) filter. The adjustable tap
weights, wm(n),m = 0,1, . . . .,M−1 indicated by circles
with arrows through them, are the filter tap weights at
time instance n and M is the filter length. These time
varying tap weights form an M× 1 weight vector ex-
pressed as

w(n) = [w0(n),w1(n), ...,wM−1(n)]T (4)

where the superscript T denotes the transpose operation
of the matrix. Similarly, the input signal samples, u(n−
m),m = 0,1, ...,M−1 form an M×1 input vector

u(n) = [u(n),u(n−1), ...,u(n−M+1)]T (5)

With these vectors, the output signal y(n) of the adaptive
FIR filter can be computed as the inner product of w(n)
and u(n), expressed as

y(n) =
m−1

∑
m=0

wm(n)u(n−m) = wT (n)u(n) (6)

Figure 3: Typical structure of the adaptive filter using
i/p and error signals to update its tap weights
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4. System Model

The block diagram of the new method is shown in Fig.
4. This method employs two adaptive filters W1(z) and
W2(z) working in tandem. The important difference,
however, is that the delay is inserted at the output of the
hearing maid. Traditionally such type of delay is used
to solve the correlation problem in the AFC filter [9].
In our approach, the objective of the appended delay is
twofold:
1) to provide (some) decorrelation, as well as
2) to help designing an efficient strategy for weight trans-
fer between the two adaptive filters as explained below.

Figure 4: Block diagram of the proposed method for
continuous AFC in hearing aids

The adaptive filter W1(z) is excited by y(n) and is ex-
pected to provide a neutralization signal for the feedback
component y f (n). The second adaptive filter W2(z) is ex-
cited by the feedback component v f (n) due to the added
probe signal v(n). It is assumed that v(n) is a low level
white signal and is uncorrelated with the input signal
s(n) and hence with the output signal y(n). The signal
picked up by the input microphone, x(n) is now given as

x(n) = s(n)+ y f (n)+ v f (n) (7)

where v f (n) = f (n)∗ v(n−D) is the acoustic feedback
component due to probe signal v(n−D) where D is an
appropriately selected delay. The error signal for W1(z),
g(n), is computed as

g(n) = x(n)−yw1(n) = s(n)+[y f n−yw1(n)]+v f (n)

(8)

which is also used as the desired response for W2(z), and
hence the error signal for W2(z), e(n) = g(n)− yw2(n),

is given as

e(n) = s(n)+[y f (n)−yw1(n)]+[v f (n)−yw2(n)] (9)

A delay based technique has been employed which has
been largely applied in the field of acoustic echo cance-
lation [14] A measure of the filter convergence is the de-
viation or the system mismatch. The normalized squared
deviation (NSD) of the adaptive filter W1(z) and W2(z)
can be respectively estimated as:

∆W̃1(n) = 10log{‖ f̃ (n)−w1F(n)‖
2

‖ f̃ (n)‖2 } (10)

∆W̃2(n) = 10log{‖ f̃ (n)−w2F(n)‖
2

‖ f̃ (n)‖2 } (11)

It is worth mentioning that both adaptive filters are con-
tinuously adapted and hence, W1(z) would tend to a
biased solution and W2(z) would slowly fine tune to a
better estimate Now the following weight transfer strat-
egy has been employed such that both filters give good
estimate of F(z).

4.1 Weight-Transfer Strategy

Since the delay is inserted at the output of the hearing
aid; this increases the effective path to be identified by
the AFC filters W1(z) and W2(z) . Thus both the adaptive
filters W1(z) and W2(z) are considered with extended-
length coefficient vectors as being given as:

w1(n) =
[

w1z(n)
w1 f (n)

]
and w2(n) =

[
w2z(n)
w2 f (n)

]
where; w1z(n) = [w1z,0(n),w1z,1(n), ...,w1z,D−1(n)]T and
w2z(n) represent the part used to model the delay (and
would eventually converge to zeros), and both w1 f (n)
and w2 f (n) model F(z) . Now convergence of the two
adaptive adaptive filters W1(z) and W2(z) can be mon-
itored on the basis of norm of extension coefficients
modeling the appended delay as

ρ1(n) = ‖w1z(n)‖2 (12)

ρ2(n) = ‖w2z(n)‖2 (13)
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The power estimates for the error signals in (8) and (9)
can be respectively expressed as;

Pg(n) = P{s+(y f−yw1)}(n)+Pv f (n) (14)

Pe(n) = P{s+(y f−yw1)}(n)+P(v f−yw2)(n) (15)

These power estimates can be recursively computed us-
ing lowpass estimator of type

Pq(n) = λPq(n−1)+(1−λ )q2(n) (16)

where λ is the forgetting factor (0.9 < λ < 1) and q(n)
is the signal of interest. At the start up (n = 0), Pg(n)≈
Pe(n). However, W1(z) converges faster as compared
with W2(z) (W2(z) being excited by a low level probe
noise v(n)), and hence Pg(n)< Pe(n) for n > 0. Finally
as n→∞, W2(z) converges too and hence Pe(n)≈ Pg(n).

Both w1z(n) and w2z(n) are initialized with all 1’s and
w1 f (n) and w2 f (n) may be initialized by null vectors
of appropriate orders. The convergence of W1(z) is
faster than W2(z) and initially ρ1(n)< ρ2(n), and hence
weights from W1(z) are copied to W2(z) as w1 f (n) →
w2 f (n).

4.2 The Adaptation Algorithm

The output of the adaptive filter W1(z) is given as

yw1(n) = wT
1 (n)y(n) (17)

where w1(n) = [w1,0(n),w1,1(n), ...,w1,L−1(n)]T is the
tapweight vector for W1(z), L1 = D+L is the tap-weight
length of W1(z), and y(n) = [y(n−1),y(n−2), ...,y(n−
L1)]

T is the signal vector comprising L1 recent samples
of y(n). It is worth mentioning that there is inherent
one-sample delay which is not shown in figures just for
the sake of simplicity. The coefficient vector for W1(z),
w1(n), is updated using the NLMS algorithm as;

w1(n+1) = w1(n)+
µ1(n)

yT (n)y(n)+δ1
g(n)y(n) (18)

where δ1 is another positive constant to avoid division
by zero, and µ1(n) is a time varying step-size parameters
being computed as;

µ1(n) =

{
N̂D1 (n)
Pg(n)

if N̂D1 (n)
Pg(n)

> µ1(n);

µ1min if otherwise;
(19)

where µ1min is the minimum value of the step-size param-
eter µ1(n), and N̂D1(n) is being computed as

N̂D1(n)= λ N̂D1(n−1)+(1−λ )
wT

1z(n)w1z(n)yT (n)y(n)
D

(20)

The output of the extended-length adaptive filter W2(z),
yw2(n) is given as;

yw2(n) = wT
2 (n)v(n) (21)

where w2(n) = [w2,0(n),w2,1(n), ...,w2,L2−1(n)]
T is the

tap-weight vector for W2(z), L2 =D+L is the tap-weight
length of W2(z) , and v(n) = [v(n),v(n− 1), ...,v(n−
L2+1]T is a signal vector for the probe signal v(n) . The
coefficient vector for W2(z), w2(n), is updated using the
NLMS algorithm as

w2(n+1) = w2(n)+
µ2(n)

vT (n)v(n)+δ2
e(n)v(n) (22)

where δ2 is another positive constant to avoid division
by zero, and µ2(n) is a time varying step-size parameters
being computed as

µ2(n) =

{
N̂D2 (n)
Pe(n)

if N̂D2 (n)
Pe(n)

> µ2(n);

µ2min if otherwise;
(23)

where µ2min is the minimum value of the step-size param-
eter µ2(n), and N̂D2(n) is being computed as

N̂D2(n)= λ N̂D2(n−1)+(1−λ )
wT

2z(n)w2z(n)vT (n)v(n)
D

(24)

5. Results and Discussion

Simulations were conducted in MATLAB with the feed-
back path obtained from an in-the-ear hearing aid. The
impulse response of the feedback path was modeled
using a FIR filter with 32 coefficients. The sampling fre-
quency considered is Fs = 8000Hz. All adaptive filters
are assumed to be FIR filters of tap-weight length 32.
The forward path representing the hearing aid process-
ing unit, is assumed to be given as G(z) = Kz−∆ where
K and ∆ respectively represent the gain and delay of
the system. In the result presented below ∆ = 10 and
the gain is chosen as k = 3. The signal to noise ratio
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(SNR) of probe signal is chosen as −15dB. The forget-
ting factor λ is chosen as 0.97. The Normalized Squared
Deviation (NSD) of filter W1(z), W2(z) and the average
NSD are employed as the performance measures.

Following considerations are made while performing the
simulation study (the corresponding simulation parame-
ters are determined experimentally and adjusted for fast
and stable convergence):

• NLMS-algorithm based conventional adaptive fil-
ter method as shown in Fig. 1. (µ = 1× 10−9,
δ = 1×10−6)
• Two adaptive filter based proposed method. (D =

4, µ1min = µ2min = 1× 10−9, δ1 = 1× 10−8,δ2 =
2.5×10−3)

Figure 5: Plots for various signals used in computer
simulations

Figure 6: Plots for the output signals with conventional
NLMS algorithm

The NSD curves in Fig. 9 shows the characteristics
of estimated feedback path in comparison with F(z).
We observe that the proposed method outperforms the
conventional method in both the convergence speed and
the steady state mismatch.

Fig. 8 shows the typical result for the error in reconstruc-
tion of the desired signal at the input of the hearing aid

being computed as

∆S(n) = |s(n)−u(n)| (25)

It is obvious that for a perfect reconstruction of the de-
sired input at the hearing aid, we must have ∆S(n)→ 0.
From Fig. 9 we see that the proposed method gives a fast
convergence speed in reproducing the desired signal at
the input of the hearing aid processing unit. The original
signals used in computer simulation are shown in Fig. 5.

Figure 7: Plots for the output signals with modified
proposed NLMS algorithm

Figure 8: Error plots in reconstruction of the desired
signal ∆S(n)

The amplified output signals of hearing aid in compari-
son with the input signal is shown in Fig. 6 and Fig. 7
where amplification can be noted from the amplitude lev-
els shown on y-axis. It is difficult to see any difference
between the amplitude signals of two methods, however,
a close observation reveals that the proposed method is
better able to replicate the input signal. In fact we hear
some ‘musical’ noise in the case of conventional method,
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whereas the proposed method produces no such noise.
It is worth mentioning that the added probe signal is so
low that it does not affect the hearing experience.

Figure 9: Normalized Squared deviation for various
cases

6. Conclusion

A novel feedback suppression scheme based on modified
NLMS algorithm is presented in this paper. We have
presented preliminary results for a continuous AFC in
the digital hearing aids. By employing the dual adaptive
filters and delay at the output of the hearing aid, we were
able to obtain the unbiased estimate of the feedback path.
Simulation results based on real speech signals showed
improved convergence rates and stable solutions. The
results obtained are quite promising, however, a detailed
investigation is required for the added stable gain (ASG),
maximum stable gain (MSG) and comparison with other
methods. MSG is defined as the maximum gain without
instability assuming a flat response of the hearing-aid
process. ASG is defined as the additional gain that is
possible by using the feedback canceller. These are the
tasks of future work.
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