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Abstract: This paper presents an algorithm for the design of an FFT computation core, based on the Radix-2 

Cooley Tukey algorithm, by reusing a single cross-computation block. The cross computation block consists of a 

network of adders/subtractors and multipliers which together makeup a single unit of Cooley Tukey butterfly 

network. The twiddle factor for each cross-computation is generated using a CORDIC processor and supplied to the 

cross-computation block. Since the design reuses a single cross-computation block, it puts forward a new method 

with a considerable minimization in the hardware resources for FFT computation as well as simplifies the overall 

architecture of the FFT core. Despite the fact that same cross-computation hardware block is repetitively used 

throughout the calculation, the performance time of the design stays within tolerable limits. Using only one cross-

computation block also allows the design to be scaled to any N-point FFT without any change in the design 

description. For example, this algorithm can be used for 8-point or for 1024-point FFT simply by changing the 

design parameter N. The results from the simulation of a 16-point FFT module, designed using this algorithm, 

shows that the FFT – coefficients are precise up to 4 digits.  
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1. Introduction 

The Cooley Tukey Radix-2 Decimation in Time - Fast 

Fourier Transform (DIT-FFT) is a popular algorithm 

for implementation of FFT computation. But, one of 

the drawbacks of this algorithm is that it requires a 

large quantity of components such as adders, 

subtractors and multiplier as the number of point 

increases, which results in an increase in size of 

hardware.  

There are many FFT computation modules available 

but, they are designed such that the number of points 

taken in the FFT computation is fixed. This means that 

in order to go from an 8-point FFT core to a 16-point 

FFT core, either the design has to be changed 

completely or significant additions to the design 

description have to be made.  

This paper presents an algorithm that uses the inherent 

repetitiveness of the Cooley Tukey Radix-2 DIT-FFT 

technique to implement FFT computation by reusing a 

single cross-computation block. The reusing of the 

single block also permits this algorithm to be scaled to 

any point FFT. The resulting design is thus a resource-

optimized and simplest architecture FFT computation 

module that can be scaled to calculate any N-point 

FFT. 

One obstacle in trying to write a common algorithm for 

any N-point FFT is calculation of twiddle factors for 

FFT computation. Usually, N is fixed and a look up 
table is generated consisting of all twiddle factors for 

the given value of N, which is later referenced during 

calculation. To apply the algorithm to any N, this 

method becomes inefficient because the size of the 

look up table is indeterminate when value of N is not 

defined. One of the possible solutions to this problem 

is to select a very high value of N and generate look up 

table. However, that would result in wastage of 

memory if the value of N is considerably low, as is the 

case in most implementations. Therefore, in this 

algorithm CORDIC processor is used to calculate all 

the twiddle factors right at the time they are required. 

In section 2, Radix-2 DIT-FFT Cooley Tukey 

algorithm and CORDIC algorithm have been 

explained. Section 3 contains detailed explanation of 

the computation algorithm followed by experiment for 

testing, result and conclusion in sections 4, 5 and 6 

respectively. 

2.  Background 

2.1  Radix-2 decimation in time FFT (DIT-

FFT) 

In this paper, the Radix-2 Cooley Tukey (Wikipedia, 

2014) Decimation in Time (DIT-FFT) algorithm is 

used for FFT calculation. The DIT-FFT algorithm is an 

efficient method of calculating Discrete Fourier 

Transform (DFT) (Oppenheim, Schafer, & Buck, 

2012) of a series of non-periodic signals. DFT is 

defined as 
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Separating x    into even and odd numbered points, 

            
  

      

        
  

     

 

Substituting      for even segment and      
  for odd segment, 
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is the DFT of even numbered points of sequence     , 
and 

                 
  

 

 
  

   

 

is the DFT of odd numbered points of sequence     . 

Thus, N point FFT has been simplified to two 
 

 
-point 

FFTs. By continuing in this fashion, a butterfly 

structure of  
 

 
       2-point FFTs is obtained. 

Figure 1 shows the butterfly structure for DIT-FFT 

computation of 8 input points. 

 

Figure 1: Radix-2 Decimation in Time (DIT)-FFT algorithm 

for 8-points 

2.2  CORDIC Algorithm 

CORDIC algorithm can be used to calculate the sine 

and cosine of an angle. To determine the sine or cosine 

for an angle β, the y or x-coordinate of a point on 

the unit circle corresponding to the desired angle must 

be found. Let us start with the unit vector    aligned 

with x-axis: 

    
 
 
  

 

Figure 2: Illustration of CORDIC Algorithm (Wikipedia, 

2014) 

In the first iteration, this vector is rotated 45° counter-

clockwise to get the vector   . Successive iterations 

rotate the vector in one or the other direction by size-

decreasing steps, until the desired angle has been 

achieved. Step i size is       
 

      for i = 1, 2, 3……  

More formally, every step of the iteration calculates a 

rotation, which is performed by multiplying the vector 

     with the rotation matrix   : 

                  

The rotation matrix is given by: 

    
           

          
  

 

http://en.wikipedia.org/wiki/Unit_circle
http://en.wikipedia.org/wiki/Rotation_matrix
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The equation (2) then becomes, 

 
  

  
  

 

          
 
 

       

      
  

    

    
  

where,      and       are the components of     . 

Restricting the angles    so that       takes on the 

values     , the multiplication with the tangent can be 

replaced by a division by a power of two, which is 

efficiently done in digital computer hardware using 

a bit shift. The expression then becomes: 

 

 
  

  
     

     
  

   
   

  
    

    
          

where, 

   
 

       
 

and    can have the values of −1 or 1, and is used to 

determine the direction of the rotation. If the required 

angle β is greater than angle reached by rotation at a 

particular iteration, then    is +1, otherwise it is −1.    

can be ignored in the iterative process and then applied 

afterward with a scaling factor: 

        

   

   

   
 

       

   

   

 

which is calculated in advance and stored in a table, or 

as a single constant if the number of iterations is fixed. 

This correction could also be made in advance, by 

scaling    and hence saving a multiplication 

(Wikipedia, 2014). 

3.  Algorithm 

As shown in Figure 1, the 2-point FFT block is the 

heart of FFT calculation. Each cross is the 

representation of one such block. Instead of using a 

different block to perform the cross-computation, only 

one cross-computation block is used and all cross-

computations are carried out by that single block. The 

algorithm controls the inputs to the cross-computation 

block by checking the current stage of the FFT 

computation and the position of the cross within the 

current stage. The terms: stage of computation and 

position of cross within stage, are explained in detail 

below. 

An N-point FFT computation can be divided into 

        independent stages in which each stage 

contains     number of cross-computations. Referring 

to Figure 1, the 8-point FFT is divided into         
  stages and each stage has       cross-

computations. The first stage of the calculation is 

performed on the input values. The output from each 

stage becomes the input to the successive stage. Also, 

the cross-computations within a particular stage are 

independent of each other. The algorithm presented 

here, makes use of these factors and manages to 

perform all computations using a single cross-

computation block. 

The position of cross within a stage is counted from top 

to bottom just like as they occur in the schematic 

representation of the algorithm. Referring to Figure 1, 

the 3-stages and crosses within each stage for 8-point 

FFT are shown in Table 1. The values are arranged in 

the form       where         are the indexes of the 

input pair to the cross-computation block. 

Table 1: The division of stages and crosses for 8-point FFT 

 

Before Stage 0 of the computation, the re-ordering of 

the N input points is carried out. This is done by 

mirroring the       bit binary value of index of the 

inputs. Referring to Figure 1, the mirroring is done 

before stage 1 wherein the           bit index of 

input values       are mirrored and mapped to      
as follows: 

Table 2: Arranging the input values by mirroring 

 

Referring to Table 1, in the Stage 0 the difference in 
the index of values in each crossing pair is 1. In Stage 

1, in each crossing pair the difference in index of 

values in the pair is 2 and in Stage 3 it is 4. This means 
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that the value of difference in index of crossing pairs is 

same within a particular stage and is a function of the 

stage number. So, for any Stage S the value of the 

difference in index of crossing pairs is given by   . 

From Table 1, a pattern in which the crossing pairs 

repeat can be observed. To illustrate the repeating 

pattern of crosses, consider the crossing pairs in Stage 

1. In Stage 1 the crossing pair Cross 0 has indexes (0, 

2) and Cross 1 has indexes (1, 3). In the same stage 

Cross 2 has indexes (4, 6) and Cross 3 has indexes (5, 

7). From these pairs, we can see that Cross 0 and Cross 

1 have unique indexes and Cross 2 and Cross 3 are 

scaled copies of Cross 0 and Cross 1. By adding 4 to 

the indexes of Cross 0, Cross 2 can be obtained. 

Similarly, by adding 4 to the indexes of Cross 1, Cross 

3 can be obtained. Also it is noted the pattern in Stage 

1 repeats after every 2 crossing pairs. 

This pattern can be generalized as follows: 

 There are    unique crossing pairs in each 

Stage S. All other crossing pairs in Stage S are 

scaled copies of these unique crossing pairs. 

 The index of the first crossing pair Cross 0 for 

Stage S is given by       . 

 The indexes of all the unique crossing pairs 

can be obtained by adding   to the indexes of 

Cross 0 i.e.            where,   ranges 

from 1 to       . 

 If the crossing pattern ends at Cross      , 

then the next instance of the pattern begins at 

Cross C and the indexes of this instance are 

obtained by adding    to the indexes of the 

unique crossing pairs. 

 For each cross-computation stage the twiddle 

factor is calculated by the CORDIC processor 

block. The angle value input to the CORDIC 

processor is       which is implemented as 

    . 

It is also noted that the index of the terms that are 

obtained at the output of each term is maintained the 

same as the index of the input terms. This is crucial for 

the working of this algorithm. 

3.1  Verification of Generalizations 

The values in Table 3 show how the indexes are 

grouped at each cross of the each of the 4 stages of 16-

point FFT calculation. Following Table 3, a detailed 

verification of the generalizations used in the algorithm 

is presented. 

Table 3: The division of stages and crosses for 16-point FFT 

 

For 16-point FFT,        

Number of independent stages in FFT-calculation, 

   
 
        

 
       

Number of cross-computations in each stage, 

 

 
  

  

 
     

So, there are 4 independent stages (Stage 0 – Stage 3) 

with 8 cross-computations (Cross0 – Cross 7) in each 

stage. 

For Stage 0 

 Number of stage,      

 Number of unique crossing pairs,  

         

So, the pattern repeats after every 1 crossing pair. 

 First crossing pair in Stage 0,  

                     

This is the only unique crossing pair in this stage. The 

7 remaining crossing pairs are scaled copies of this 

crossing pair. 

Here, crossing pattern has ended at Cross 0. The next 

instance of the pattern begins at Cross 1 (C = 1). 

 Indexes in Cross 1 are scaled by 

          

 Second crossing pair in Stage 0 is scaled copy 

of Cross 0,  

                             
       

The next instance of the pattern begins at Cross 2 (C = 

2). 

 Indexes in Cross 2 are scaled by  
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 Third crossing pair in Stage 0 is scaled copy of 

Cross 0, 

                             
       

Similarly, the indexes of crossing pairs Cross 3 to 

Cross 7 for Stage 0 can be calculated. 

For Stage 1 

 Number of stage,      

 Number of unique crossing pairs,  

         

So, the pattern repeats after every 2 crossing pairs. 

 First crossing pair in Stage 1,  

                     

This is not the only unique crossing pair in this stage. 

The second unique crossing pair (Cross 1) can be 

obtained by adding   to the indexes of Cross 0. 

 Range of  ,  

                               

 Second crossing pair in Stage 1, 

                                    

These are the 2 unique crossing pairs in this stage. The 

6 remaining crossing pairs are scaled copies of these 2 

crossing pairs. 

Here, crossing pattern has ended at Cross 1. The next 

instance of the pattern begins at Cross 2 (C = 2). 

 Indexes in Cross 2 and Cross 3 are scaled by  

          

 Third crossing pair in Stage 1 is scaled copy of 

Cross 0,  

                             
       

 Fourth crossing pair in Stage 1 is scaled copy 

of Cross 1,  

                             
       

Here, crossing pattern has ended at Cross 3. The next 

instance of the pattern begins at Cross 4 (C = 4). 

 Indexes in Cross 4 and Cross 5 are scaled by  

          

 Fifth crossing pair in Stage 1 is scaled copy of 

Cross 0, 

                             
        

 Sixth crossing pair in Stage 1 is scaled copy of 

Cross 1, 

                             
        

Similarly, the indexes of crossing pairs Cross 6 and 

Cross 7 for Stage 1 can be calculated. 

For Stage 2 

 Number of stage,      

 Number of unique crossing pairs,  

         

So, the pattern repeats after every 4 crossing pairs. 

 First crossing pair in Stage 2,  

                     

This is not the only unique crossing pair in this stage. 

The 3 other unique crossing pair (Cross 1, Cross 2 and 

Cross 3) can be obtained by adding   to the indexes of 

Cross 0. 

 Range of  ,  

                               

 Second crossing pair in Stage 2,  

                                    

 Third crossing pair in Stage 2,  

                                    

 Fourth crossing pair in Stage 2,  

                                    

These are the 4 unique crossing pairs in this stage. The 

4 remaining crossing pairs are scaled copies of these 

two crossing pairs. 

Here, crossing pattern has ended at Cross 3. The next 

instance of the pattern begins at Cross 4 (C = 4). 

 Indexes in Cross 4 to Cross 7 are scaled by 

          

 Fifth crossing pair in Stage 2 is scaled copy of 

Cross 0,  
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 Sixth crossing pair in Stage 2 is scaled copy of 

Cross 1,  

                             
        

 Seventh crossing pair in Stage 2 is scaled copy 

of Cross 2,  

                             
         

 Eighth crossing pair in Stage 2 is scaled copy 

of Cross 3,  

                             
         

For Stage 3 

 Number of stage,      

 Number of unique crossing pairs,  

         

So, the pattern repeats after every 4 crossing pairs. 

 First crossing pair in Stage 3,  

                     

This is not the only unique crossing pair in this stage. 

The 8 other unique crossing pair (Cross 1 to Cross 7) 

can be obtained by adding   to the indexes of Cross 0. 

 Range of  ,  

                               

 Second crossing pair in Stage 3,  

                                    

 Third crossing pair in Stage 3,  

                             
        

Similarly, the indexes of crossing pairs Cross 3 and 

Cross 7 for Stage 3 can be calculated. 

4.  Experiment for Testing 

For testing the algorithm presented in this paper, an 

HDL module was developed using Verilog HDL. The 

module was coded using Xilinx ISE v14.7 and verified 

using the ISim Simulator. The designed module takes 

the value of N (for N-point FFT) as a parameter input 

during module instantiation. So, the designed module 

can be scaled to any N-point FFT-computation core by 
simply changing the value of parameter N at module 

instantiation. The default value for the parameter N is 

set to 16 for 16-point FFT and this default is used to 

generate the results presented in section 5. 

 

Figure 3: Block Diagram of Designed System 

The designed module takes N number of 17 bit signed 

values as input. As all the calculations are performed in 

fixed point, so the inputs are scaled by a factor of 

   (implemented as left shift by 20) and are arranged 

into two Nx37 bit register file buffers, one storing real 

values and the other storing imaginary values. The 

Finite State Machine with Data-path (FSMD) passes 

the indexes of crossing pairs, one pair at a time, to the 

register buffers to select values to pass to the cross 

computation block. The cross computation block 

performs the Radix-2 calculation for the values at its 

input and stores the results in a temporary buffer. The 

values from the temporary buffer are then written back 

to the calculation buffer at the same indexes as those of 

the crossing pair input to the cross-computation block. 

The twiddle factors required to perform the FFT cross-

computation are supplied to the cross-computation 

block by the CORDIC processor unit. The value of 

angle, required for twiddle factor calculation at each 

cross-computation, is determined within the FSMD and 

passed to the CORDIC processor. The CORDIC 

processor uses the angle input to it to generate the 

twiddle factors. 

Next, brief descriptions of all of the functional blocks 

of the designed module are presented. 

4.1 Cross – Computation Block 

 

Figure 4: Cross Computation Block 
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The cross-computation block used in the design takes 

two input terms each with a real and imaginary part. 

The data-width of the input terms is 37-bit. Referring 

to Figure 4 the input terms are                    . 

The twiddle factor, with a data width of 22-bit, is 

supplied by the CORDIC processor and is also an input 

to the cross-computation block. In Figure 4 the twiddle 

factor terms are            . There are two outputs 

terms from the cross-computation block, each 37-bit 

wide which are represented as                     

in Figure 4.  

The cross-computation block is designed using 

combinational logic, so the calculations performed 

within this block do not use up any clock cycles. The 

calculations performed by the cross computation block 

are shown below: 

                            

                          

                           

                          

Calculating the terms                   and 

                  requires the use of 4 multiplier 

units and 2 adder/subtractor units. Since a multiplier 

unit occupies larger design area, it is best practice to 

reduce the number of multipliers in digital design. To 

this end, in this paper an alternative method to perform 

the above calculations is adopted. This method reduces 

the number of multiplier units to 3. 

The alternative method is presented below: 

                    

                       

                   

                        

                    

            

             

             

              

It is noted that only one instance of the cross-

computation block is defined in the code. All the cross-

computation operations are performed by that one 

instance. 

4.2  CORDIC Processor 

The CORDIC processor block used in the design takes 

a 22-bit radian angle measure as input and returns the 

value of sine and cosine scaled by a factor of     in 

two 22-bit output ports. Referring to Figure 5 the input 

term is           and the output terms are 

                   . The outputs from the CORDIC 

processor are directly interfaced to the twiddle factor 

inputs of the cross-computation block. 

 

Figure 5: CORDIC Processor Block 

The CORDIC processor is designed with memory of 7 

values of       (Refer Section 2). The value of sine 

and cosine are output from a chain of 20-iterations. 

When separately tested, the CORDIC processor block 

exhibited a precision of 5 points after decimal. 

The CORDIC processor block is also modeled using 

combinational logic, which means that it also does not 

use up any clock cycles for calculation. 

4.3  Finite State Machine with Data-path 

(FSMD) 

 

Figure 6: Schematic representation of the states of the 

FSMD 

The Finite State Machine with Data-path (FSMD) used 

in the design manages all the operations performed by 
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the designed module. The FSMD performs tasks such 

as storing input values to buffer, routing values from 

buffer to cross-computation block and managing the 

counters for current stage of FFT and current cross 

within that stage. The FSMD is designed with 7 states. 

The steps involved in transition from one state to 

another are explained below: 

State 1 of FSMD (Idle / Wait for Input) 

The first state of the FSMD is the idle state. In this 

state the FSMD waits for new inputs to arrive. In this 

state the values for counters of State (S), Cross (C) and 

term (n) are initialized. When the signal for new input 

is received then the FSMD changes to state 2. 

State 2 of FSMD (Scale Input and Store in Buffer) 

In the second state the inputs are read from the input 

ports of the module and are stored in the Nx37-bit 

calculation buffer after scaling by the factor    (Refer 

to Figure 3). The indexing for the buffer is done using 

the term n. The FSMD cycles back to state 2 till the 

term n is equal to the number of inputs N, to complete 

the data scale and store operation.  

State 3 of FSMD (Mirror Arrange Buffer) 

In this stage, the scaled inputs in the buffer storage are 

re-ordered according to the principle previously 

explained in Section 3 and Table 2 of this paper. The 

mirroring operation also uses the term n for indexing 

the values stored in the buffer. So the FSMD cycles 

back to state 3 till the term n is equal to the number of 

values N. Note that a separate temporary buffer is used 

to store the mirrored values while the FSMD loops 

within state 3. 

State 4 of FSMD (Send Cross C of Stage S to Cross- 

Computation Block) 

In this state, a number of counters for stage S, cross C, 

range p (Refer to Section 3 Verification of 

Generalizations) are used to calculate the index of 

values to send to the cross-computation block. The 

value of           (Refer Section 4.2) is also 

determined in this state and passed to the CORDIC 

processor module. 

State 5 of FSMD (Receive results of Cross C of Stage 

S to Cross-Computation Block) 

In this state, the results from the temporary buffer 

(Refer Figure 3) are written back to the calculation 

buffer at the same indexes as the input to cross-

computation block. Then, the value in counter C is 

checked to determine whether it is final cross for Stage 

S. If the counter indicates that it is not the final cross 

then the cross counter is incremented and the FSMD 

loops to state 4. If the counter indicates that it is the 

final cross then the stage counter S is incremented by 1 

and the FSMD transitions to state 6. 

State 6 of FSMD (Check if Stage S is final stage) 

The value of counter S is checked to determine 

whether or not Stage S is the final stage of FFT-

computation. If the counter indicates that it is not the 

final stage of the FFT-computation then the FSMD 

loops to stage 4. If the counter indicates that it is the 

final stage of the FFT-computation then the FSMD 

transitions to state 7. 

State 7 of FSMD (Copy Values from Buffer to 

Output) 

When state 7 of the FSMD is reached then the results 

of the FFT-computation are copied from the 

calculation buffer to the output ports of the designed 

module. After doing so, the FSMD transitions back to 

state 1 and waits for new input to arrive. 

5.  Result 

Table 4 shows the result of applying our algorithm to 

calculate 16-point FFT. The result obtained by 

applying proposed algorithm has been compared with 

the actual FFT values obtained from MATLAB. The 

table clearly shows that our algorithm calculates FFT 

with high precision. The absolute value of error is 

always below 0.03 for the input values of 3 digits. 

Therefore, proposed algorithm is precise up to 4 digits. 

The simulation waveform in Figure 7 shows the time 

for calculation of 16-point FFT. As shown by the 

figure, the time for calculation is only 2µs. This is a 

crucial result, obtained from the experiment, because 

time required for calculation is well within the 

tolerable range, despite the fact that we have performed 

all the computations using a single cross-computation 

block. Thus, reusing same hardware for all 

computation minimizes the hardware resources, uses 

minimum chip area as well as considerably simplifies 

the hardware design. Yet, the computation time is well 

within the acceptable range.  
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Table 4: Result showing precision of FFT calculation 

 

 

 

Figure 7: Simulation Waveform from test of 16-point FFT
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Consider the calculation of FFT for audio signals. 

Audio signals range in the frequency of 0 to 44 kHz 

and the Nyquist rate for sampling is below 100 kHz. 

Even if the audio signal is sampled at twice the Nyquist 

rate, sampling frequency becomes 200 kHz and 

sampling period will be 5 microsecond. Thus, 

calculation time of 2µs is well within the required 

range for audio processing.  

Therefore, the results corroborate our claim that our 

design and algorithm keeps the architecture simple and 

minimizes resources without increasing the 

computation time beyond acceptable range. 

6.  Conclusion 

The algorithm presented in this paper calculates FFT 

with high precision, with satisfactory speed and at the 

same time minimizes hardware resources. In addition, 

our algorithm is highly generalized and can be used to 

calculate any N-point FFT by changing only the value 

of N during module instantiation. 
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