
551

Algorithm for Resource-Optimized Design of any N-point FFT-Computation

Prasanna Kansakar
1
, Sandesh Ghimire

2
, Bikash Poudel

1

1
 Department of Electronics and Computer Engineering, Thapathali Campus

2
Engineer, Nepal Electricity Authority

Corresponding Email: prasanna.kansakar@gmail.com

Abstract: This paper presents an algorithm for the design of an FFT computation core, based on the Radix-2

Cooley Tukey algorithm, by reusing a single cross-computation block. The cross computation block consists of a

network of adders/subtractors and multipliers which together makeup a single unit of Cooley Tukey butterfly

network. The twiddle factor for each cross-computation is generated using a CORDIC processor and supplied to the

cross-computation block. Since the design reuses a single cross-computation block, it puts forward a new method

with a considerable minimization in the hardware resources for FFT computation as well as simplifies the overall

architecture of the FFT core. Despite the fact that same cross-computation hardware block is repetitively used

throughout the calculation, the performance time of the design stays within tolerable limits. Using only one cross-

computation block also allows the design to be scaled to any N-point FFT without any change in the design

description. For example, this algorithm can be used for 8-point or for 1024-point FFT simply by changing the

design parameter N. The results from the simulation of a 16-point FFT module, designed using this algorithm,

shows that the FFT – coefficients are precise up to 4 digits.

Keywords: N-point FFT; Cooley Tukey FFT; Radix-2 DIT-FFT; CORDIC processor

1. Introduction

The Cooley Tukey Radix-2 Decimation in Time - Fast

Fourier Transform (DIT-FFT) is a popular algorithm

for implementation of FFT computation. But, one of

the drawbacks of this algorithm is that it requires a

large quantity of components such as adders,

subtractors and multiplier as the number of point

increases, which results in an increase in size of

hardware.

There are many FFT computation modules available

but, they are designed such that the number of points

taken in the FFT computation is fixed. This means that

in order to go from an 8-point FFT core to a 16-point

FFT core, either the design has to be changed

completely or significant additions to the design

description have to be made.

This paper presents an algorithm that uses the inherent

repetitiveness of the Cooley Tukey Radix-2 DIT-FFT

technique to implement FFT computation by reusing a

single cross-computation block. The reusing of the

single block also permits this algorithm to be scaled to

any point FFT. The resulting design is thus a resource-

optimized and simplest architecture FFT computation

module that can be scaled to calculate any N-point

FFT.

One obstacle in trying to write a common algorithm for

any N-point FFT is calculation of twiddle factors for

FFT computation. Usually, N is fixed and a look up
table is generated consisting of all twiddle factors for

the given value of N, which is later referenced during

calculation. To apply the algorithm to any N, this

method becomes inefficient because the size of the

look up table is indeterminate when value of N is not

defined. One of the possible solutions to this problem

is to select a very high value of N and generate look up

table. However, that would result in wastage of

memory if the value of N is considerably low, as is the

case in most implementations. Therefore, in this

algorithm CORDIC processor is used to calculate all

the twiddle factors right at the time they are required.

In section 2, Radix-2 DIT-FFT Cooley Tukey

algorithm and CORDIC algorithm have been

explained. Section 3 contains detailed explanation of

the computation algorithm followed by experiment for

testing, result and conclusion in sections 4, 5 and 6

respectively.

2. Background

2.1 Radix-2 decimation in time FFT (DIT-

FFT)

In this paper, the Radix-2 Cooley Tukey (Wikipedia,

2014) Decimation in Time (DIT-FFT) algorithm is

used for FFT calculation. The DIT-FFT algorithm is an

efficient method of calculating Discrete Fourier

Transform (DFT) (Oppenheim, Schafer, & Buck,

2012) of a series of non-periodic signals. DFT is

defined as

552 Algorithm for Resource-Optimized Design of any N-point FFT-Computation

where,

Separating x into even and odd numbered points,

Substituting for even segment and
 for odd segment,

where,

is the DFT of even numbered points of sequence ,
and

is the DFT of odd numbered points of sequence .

Thus, N point FFT has been simplified to two

-point

FFTs. By continuing in this fashion, a butterfly

structure of

 2-point FFTs is obtained.

Figure 1 shows the butterfly structure for DIT-FFT

computation of 8 input points.

Figure 1: Radix-2 Decimation in Time (DIT)-FFT algorithm

for 8-points

2.2 CORDIC Algorithm

CORDIC algorithm can be used to calculate the sine

and cosine of an angle. To determine the sine or cosine

for an angle β, the y or x-coordinate of a point on

the unit circle corresponding to the desired angle must

be found. Let us start with the unit vector aligned

with x-axis:

Figure 2: Illustration of CORDIC Algorithm (Wikipedia,

2014)

In the first iteration, this vector is rotated 45° counter-

clockwise to get the vector . Successive iterations

rotate the vector in one or the other direction by size-

decreasing steps, until the desired angle has been

achieved. Step i size is

 for i = 1, 2, 3……

More formally, every step of the iteration calculates a

rotation, which is performed by multiplying the vector

 with the rotation matrix :

The rotation matrix is given by:

http://en.wikipedia.org/wiki/Unit_circle
http://en.wikipedia.org/wiki/Rotation_matrix

Proceedings of IOE Graduate Conference, 2014 553

The equation (2) then becomes,

where, and are the components of .

Restricting the angles so that takes on the

values , the multiplication with the tangent can be

replaced by a division by a power of two, which is

efficiently done in digital computer hardware using

a bit shift. The expression then becomes:

where,

and can have the values of −1 or 1, and is used to

determine the direction of the rotation. If the required

angle β is greater than angle reached by rotation at a

particular iteration, then is +1, otherwise it is −1.

can be ignored in the iterative process and then applied

afterward with a scaling factor:

which is calculated in advance and stored in a table, or

as a single constant if the number of iterations is fixed.

This correction could also be made in advance, by

scaling and hence saving a multiplication

(Wikipedia, 2014).

3. Algorithm

As shown in Figure 1, the 2-point FFT block is the

heart of FFT calculation. Each cross is the

representation of one such block. Instead of using a

different block to perform the cross-computation, only

one cross-computation block is used and all cross-

computations are carried out by that single block. The

algorithm controls the inputs to the cross-computation

block by checking the current stage of the FFT

computation and the position of the cross within the

current stage. The terms: stage of computation and

position of cross within stage, are explained in detail

below.

An N-point FFT computation can be divided into

 independent stages in which each stage

contains number of cross-computations. Referring

to Figure 1, the 8-point FFT is divided into
 stages and each stage has cross-

computations. The first stage of the calculation is

performed on the input values. The output from each

stage becomes the input to the successive stage. Also,

the cross-computations within a particular stage are

independent of each other. The algorithm presented

here, makes use of these factors and manages to

perform all computations using a single cross-

computation block.

The position of cross within a stage is counted from top

to bottom just like as they occur in the schematic

representation of the algorithm. Referring to Figure 1,

the 3-stages and crosses within each stage for 8-point

FFT are shown in Table 1. The values are arranged in

the form where are the indexes of the

input pair to the cross-computation block.

Table 1: The division of stages and crosses for 8-point FFT

Before Stage 0 of the computation, the re-ordering of

the N input points is carried out. This is done by

mirroring the bit binary value of index of the

inputs. Referring to Figure 1, the mirroring is done

before stage 1 wherein the bit index of

input values are mirrored and mapped to
as follows:

Table 2: Arranging the input values by mirroring

Referring to Table 1, in the Stage 0 the difference in
the index of values in each crossing pair is 1. In Stage

1, in each crossing pair the difference in index of

values in the pair is 2 and in Stage 3 it is 4. This means

554 Algorithm for Resource-Optimized Design of any N-point FFT-Computation

that the value of difference in index of crossing pairs is

same within a particular stage and is a function of the

stage number. So, for any Stage S the value of the

difference in index of crossing pairs is given by .

From Table 1, a pattern in which the crossing pairs

repeat can be observed. To illustrate the repeating

pattern of crosses, consider the crossing pairs in Stage

1. In Stage 1 the crossing pair Cross 0 has indexes (0,

2) and Cross 1 has indexes (1, 3). In the same stage

Cross 2 has indexes (4, 6) and Cross 3 has indexes (5,

7). From these pairs, we can see that Cross 0 and Cross

1 have unique indexes and Cross 2 and Cross 3 are

scaled copies of Cross 0 and Cross 1. By adding 4 to

the indexes of Cross 0, Cross 2 can be obtained.

Similarly, by adding 4 to the indexes of Cross 1, Cross

3 can be obtained. Also it is noted the pattern in Stage

1 repeats after every 2 crossing pairs.

This pattern can be generalized as follows:

 There are unique crossing pairs in each

Stage S. All other crossing pairs in Stage S are

scaled copies of these unique crossing pairs.

 The index of the first crossing pair Cross 0 for

Stage S is given by .

 The indexes of all the unique crossing pairs

can be obtained by adding to the indexes of

Cross 0 i.e. where, ranges

from 1 to .

 If the crossing pattern ends at Cross ,

then the next instance of the pattern begins at

Cross C and the indexes of this instance are

obtained by adding to the indexes of the

unique crossing pairs.

 For each cross-computation stage the twiddle

factor is calculated by the CORDIC processor

block. The angle value input to the CORDIC

processor is which is implemented as

 .

It is also noted that the index of the terms that are

obtained at the output of each term is maintained the

same as the index of the input terms. This is crucial for

the working of this algorithm.

3.1 Verification of Generalizations

The values in Table 3 show how the indexes are

grouped at each cross of the each of the 4 stages of 16-

point FFT calculation. Following Table 3, a detailed

verification of the generalizations used in the algorithm

is presented.

Table 3: The division of stages and crosses for 16-point FFT

For 16-point FFT,

Number of independent stages in FFT-calculation,

Number of cross-computations in each stage,

So, there are 4 independent stages (Stage 0 – Stage 3)

with 8 cross-computations (Cross0 – Cross 7) in each

stage.

For Stage 0

 Number of stage,

 Number of unique crossing pairs,

So, the pattern repeats after every 1 crossing pair.

 First crossing pair in Stage 0,

This is the only unique crossing pair in this stage. The

7 remaining crossing pairs are scaled copies of this

crossing pair.

Here, crossing pattern has ended at Cross 0. The next

instance of the pattern begins at Cross 1 (C = 1).

 Indexes in Cross 1 are scaled by

 Second crossing pair in Stage 0 is scaled copy

of Cross 0,

The next instance of the pattern begins at Cross 2 (C =

2).

 Indexes in Cross 2 are scaled by

Proceedings of IOE Graduate Conference, 2014 555

 Third crossing pair in Stage 0 is scaled copy of

Cross 0,

Similarly, the indexes of crossing pairs Cross 3 to

Cross 7 for Stage 0 can be calculated.

For Stage 1

 Number of stage,

 Number of unique crossing pairs,

So, the pattern repeats after every 2 crossing pairs.

 First crossing pair in Stage 1,

This is not the only unique crossing pair in this stage.

The second unique crossing pair (Cross 1) can be

obtained by adding to the indexes of Cross 0.

 Range of ,

 Second crossing pair in Stage 1,

These are the 2 unique crossing pairs in this stage. The

6 remaining crossing pairs are scaled copies of these 2

crossing pairs.

Here, crossing pattern has ended at Cross 1. The next

instance of the pattern begins at Cross 2 (C = 2).

 Indexes in Cross 2 and Cross 3 are scaled by

 Third crossing pair in Stage 1 is scaled copy of

Cross 0,

 Fourth crossing pair in Stage 1 is scaled copy

of Cross 1,

Here, crossing pattern has ended at Cross 3. The next

instance of the pattern begins at Cross 4 (C = 4).

 Indexes in Cross 4 and Cross 5 are scaled by

 Fifth crossing pair in Stage 1 is scaled copy of

Cross 0,

 Sixth crossing pair in Stage 1 is scaled copy of

Cross 1,

Similarly, the indexes of crossing pairs Cross 6 and

Cross 7 for Stage 1 can be calculated.

For Stage 2

 Number of stage,

 Number of unique crossing pairs,

So, the pattern repeats after every 4 crossing pairs.

 First crossing pair in Stage 2,

This is not the only unique crossing pair in this stage.

The 3 other unique crossing pair (Cross 1, Cross 2 and

Cross 3) can be obtained by adding to the indexes of

Cross 0.

 Range of ,

 Second crossing pair in Stage 2,

 Third crossing pair in Stage 2,

 Fourth crossing pair in Stage 2,

These are the 4 unique crossing pairs in this stage. The

4 remaining crossing pairs are scaled copies of these

two crossing pairs.

Here, crossing pattern has ended at Cross 3. The next

instance of the pattern begins at Cross 4 (C = 4).

 Indexes in Cross 4 to Cross 7 are scaled by

 Fifth crossing pair in Stage 2 is scaled copy of

Cross 0,

556 Algorithm for Resource-Optimized Design of any N-point FFT-Computation

 Sixth crossing pair in Stage 2 is scaled copy of

Cross 1,

 Seventh crossing pair in Stage 2 is scaled copy

of Cross 2,

 Eighth crossing pair in Stage 2 is scaled copy

of Cross 3,

For Stage 3

 Number of stage,

 Number of unique crossing pairs,

So, the pattern repeats after every 4 crossing pairs.

 First crossing pair in Stage 3,

This is not the only unique crossing pair in this stage.

The 8 other unique crossing pair (Cross 1 to Cross 7)

can be obtained by adding to the indexes of Cross 0.

 Range of ,

 Second crossing pair in Stage 3,

 Third crossing pair in Stage 3,

Similarly, the indexes of crossing pairs Cross 3 and

Cross 7 for Stage 3 can be calculated.

4. Experiment for Testing

For testing the algorithm presented in this paper, an

HDL module was developed using Verilog HDL. The

module was coded using Xilinx ISE v14.7 and verified

using the ISim Simulator. The designed module takes

the value of N (for N-point FFT) as a parameter input

during module instantiation. So, the designed module

can be scaled to any N-point FFT-computation core by
simply changing the value of parameter N at module

instantiation. The default value for the parameter N is

set to 16 for 16-point FFT and this default is used to

generate the results presented in section 5.

Figure 3: Block Diagram of Designed System

The designed module takes N number of 17 bit signed

values as input. As all the calculations are performed in

fixed point, so the inputs are scaled by a factor of

 (implemented as left shift by 20) and are arranged

into two Nx37 bit register file buffers, one storing real

values and the other storing imaginary values. The

Finite State Machine with Data-path (FSMD) passes

the indexes of crossing pairs, one pair at a time, to the

register buffers to select values to pass to the cross

computation block. The cross computation block

performs the Radix-2 calculation for the values at its

input and stores the results in a temporary buffer. The

values from the temporary buffer are then written back

to the calculation buffer at the same indexes as those of

the crossing pair input to the cross-computation block.

The twiddle factors required to perform the FFT cross-

computation are supplied to the cross-computation

block by the CORDIC processor unit. The value of

angle, required for twiddle factor calculation at each

cross-computation, is determined within the FSMD and

passed to the CORDIC processor. The CORDIC

processor uses the angle input to it to generate the

twiddle factors.

Next, brief descriptions of all of the functional blocks

of the designed module are presented.

4.1 Cross – Computation Block

Figure 4: Cross Computation Block

Proceedings of IOE Graduate Conference, 2014 557

The cross-computation block used in the design takes

two input terms each with a real and imaginary part.

The data-width of the input terms is 37-bit. Referring

to Figure 4 the input terms are .

The twiddle factor, with a data width of 22-bit, is

supplied by the CORDIC processor and is also an input

to the cross-computation block. In Figure 4 the twiddle

factor terms are . There are two outputs

terms from the cross-computation block, each 37-bit

wide which are represented as

in Figure 4.

The cross-computation block is designed using

combinational logic, so the calculations performed

within this block do not use up any clock cycles. The

calculations performed by the cross computation block

are shown below:

Calculating the terms and

 requires the use of 4 multiplier

units and 2 adder/subtractor units. Since a multiplier

unit occupies larger design area, it is best practice to

reduce the number of multipliers in digital design. To

this end, in this paper an alternative method to perform

the above calculations is adopted. This method reduces

the number of multiplier units to 3.

The alternative method is presented below:

It is noted that only one instance of the cross-

computation block is defined in the code. All the cross-

computation operations are performed by that one

instance.

4.2 CORDIC Processor

The CORDIC processor block used in the design takes

a 22-bit radian angle measure as input and returns the

value of sine and cosine scaled by a factor of in

two 22-bit output ports. Referring to Figure 5 the input

term is and the output terms are

 . The outputs from the CORDIC

processor are directly interfaced to the twiddle factor

inputs of the cross-computation block.

Figure 5: CORDIC Processor Block

The CORDIC processor is designed with memory of 7

values of (Refer Section 2). The value of sine

and cosine are output from a chain of 20-iterations.

When separately tested, the CORDIC processor block

exhibited a precision of 5 points after decimal.

The CORDIC processor block is also modeled using

combinational logic, which means that it also does not

use up any clock cycles for calculation.

4.3 Finite State Machine with Data-path

(FSMD)

Figure 6: Schematic representation of the states of the

FSMD

The Finite State Machine with Data-path (FSMD) used

in the design manages all the operations performed by

558 Algorithm for Resource-Optimized Design of any N-point FFT-Computation

the designed module. The FSMD performs tasks such

as storing input values to buffer, routing values from

buffer to cross-computation block and managing the

counters for current stage of FFT and current cross

within that stage. The FSMD is designed with 7 states.

The steps involved in transition from one state to

another are explained below:

State 1 of FSMD (Idle / Wait for Input)

The first state of the FSMD is the idle state. In this

state the FSMD waits for new inputs to arrive. In this

state the values for counters of State (S), Cross (C) and

term (n) are initialized. When the signal for new input

is received then the FSMD changes to state 2.

State 2 of FSMD (Scale Input and Store in Buffer)

In the second state the inputs are read from the input

ports of the module and are stored in the Nx37-bit

calculation buffer after scaling by the factor (Refer

to Figure 3). The indexing for the buffer is done using

the term n. The FSMD cycles back to state 2 till the

term n is equal to the number of inputs N, to complete

the data scale and store operation.

State 3 of FSMD (Mirror Arrange Buffer)

In this stage, the scaled inputs in the buffer storage are

re-ordered according to the principle previously

explained in Section 3 and Table 2 of this paper. The

mirroring operation also uses the term n for indexing

the values stored in the buffer. So the FSMD cycles

back to state 3 till the term n is equal to the number of

values N. Note that a separate temporary buffer is used

to store the mirrored values while the FSMD loops

within state 3.

State 4 of FSMD (Send Cross C of Stage S to Cross-

Computation Block)

In this state, a number of counters for stage S, cross C,

range p (Refer to Section 3 Verification of

Generalizations) are used to calculate the index of

values to send to the cross-computation block. The

value of (Refer Section 4.2) is also

determined in this state and passed to the CORDIC

processor module.

State 5 of FSMD (Receive results of Cross C of Stage

S to Cross-Computation Block)

In this state, the results from the temporary buffer

(Refer Figure 3) are written back to the calculation

buffer at the same indexes as the input to cross-

computation block. Then, the value in counter C is

checked to determine whether it is final cross for Stage

S. If the counter indicates that it is not the final cross

then the cross counter is incremented and the FSMD

loops to state 4. If the counter indicates that it is the

final cross then the stage counter S is incremented by 1

and the FSMD transitions to state 6.

State 6 of FSMD (Check if Stage S is final stage)

The value of counter S is checked to determine

whether or not Stage S is the final stage of FFT-

computation. If the counter indicates that it is not the

final stage of the FFT-computation then the FSMD

loops to stage 4. If the counter indicates that it is the

final stage of the FFT-computation then the FSMD

transitions to state 7.

State 7 of FSMD (Copy Values from Buffer to

Output)

When state 7 of the FSMD is reached then the results

of the FFT-computation are copied from the

calculation buffer to the output ports of the designed

module. After doing so, the FSMD transitions back to

state 1 and waits for new input to arrive.

5. Result

Table 4 shows the result of applying our algorithm to

calculate 16-point FFT. The result obtained by

applying proposed algorithm has been compared with

the actual FFT values obtained from MATLAB. The

table clearly shows that our algorithm calculates FFT

with high precision. The absolute value of error is

always below 0.03 for the input values of 3 digits.

Therefore, proposed algorithm is precise up to 4 digits.

The simulation waveform in Figure 7 shows the time

for calculation of 16-point FFT. As shown by the

figure, the time for calculation is only 2µs. This is a

crucial result, obtained from the experiment, because

time required for calculation is well within the

tolerable range, despite the fact that we have performed

all the computations using a single cross-computation

block. Thus, reusing same hardware for all

computation minimizes the hardware resources, uses

minimum chip area as well as considerably simplifies

the hardware design. Yet, the computation time is well

within the acceptable range.

Proceedings of IOE Graduate Conference, 2014 559

Table 4: Result showing precision of FFT calculation

Figure 7: Simulation Waveform from test of 16-point FFT

560 Algorithm for Resource-Optimized Design of any N-point FFT-Computation

Consider the calculation of FFT for audio signals.

Audio signals range in the frequency of 0 to 44 kHz

and the Nyquist rate for sampling is below 100 kHz.

Even if the audio signal is sampled at twice the Nyquist

rate, sampling frequency becomes 200 kHz and

sampling period will be 5 microsecond. Thus,

calculation time of 2µs is well within the required

range for audio processing.

Therefore, the results corroborate our claim that our

design and algorithm keeps the architecture simple and

minimizes resources without increasing the

computation time beyond acceptable range.

6. Conclusion

The algorithm presented in this paper calculates FFT

with high precision, with satisfactory speed and at the

same time minimizes hardware resources. In addition,

our algorithm is highly generalized and can be used to

calculate any N-point FFT by changing only the value

of N during module instantiation.

References

Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (2012).

Discrete-Time Signal Processing (Second ed.). Pearson

Education.

Wikipedia. (2014, August). Cooley–Tukey FFT algorithm.

Retrieved August 2014, from Wikipedia:

http://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_F

FT_algorithm

Wikipedia. (2014, Septembeer). CORDIC. Retrieved August

2014, from Wikipedia:

http://en.wikipedia.org/wiki/CORDIC

