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Abstract: In this study, dynamic analysis of the Pelton turbine and assembly is carried out to obtain the natural 

frequency of the system. A mathematical model is developed  to calculate the kinetic energy and the strain energy. 

The equations of motion are derived using Lagrange equations and the Rayleigh-Ritz method is used to study the 

basic phenomena of cylindrical mode of rotor. For the validation purpose, modal analysis is carried out in 

Mechanical APDL 14.5 to obtain the critical frequency. The developed methodologies were followed to find the 

solution of the Pelton turbine test setup of National College of Engineering. The critical frequencies of the system 

were found to be 192.69 Hz and 192.73 Hz in the global X and Y direction for the cylindrical mode. The result from 

simulation was 137.86 Hz and 137.98 for the same type of system. Simulation works were further carried out 

considering the bearing stiffness. Sensitivity of various parameters decisive for dynamic behavior were investigated  
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1. Introduction 

The study of dynamic behavior of hydraulic machinery 

has been of great importance in order to understand the 

operating mechanism and the failures associated with 

the machines. Machines are set to vibration under 

several excitation modes. So, accurate prediction of 

vibration characteristics is crucial in the design stage of 

hydraulic machinery considering the requirements of 

quality, performance and safety. In case of Pelton 

Turbine, the system can be assumed to a disk mounted 

on the shaft with bearings at its supports. This system, 

usually signified as Pelton Turbine and assembly, 

operates at high rotational speed for the purpose of 

electricity generation. So, there is a need to develop 

methodologies that allow for more realistic dynamic 

analysis of Pelton turbines because prototyping and 

testing cost are exceptionally high and failure is 

generally disastrous in the practical applications and 

testing of these systems. 

Pelton Turbines has been widely used in hydro-electric 

plants around the country. Beside large hydro power 

plants, Pelton turbines are also being used in several 

micro hydro power plants. In MHP plants, the turbine 

is usually designed and manufactured by local 

manufacturers within the country. Several researches 

have been conducted in the field of sediment and 

erosion for improvement of designs. However, very 

less work has been done in the field of the dynamic 

behavior of turbines and their effects in design and 

operation. Even though this is a well-established 

turbine technology, there are many unanswered 

questions regarding design and optimization. Thus, 

further development is still relevant today. This work 
of dynamic analysis of Pelton turbine identifies the 

assembly as a rotor disk system as shown in Figure 

1and hence dynamic behaviour is studied by 

developing a mathematical model for rotor disk 

system. 

 

Figure 1: Simple Rotor Disk System 

2.  Literature Review 

Rotor dynamics fundamental: 

Rotor dynamics is a specialized branch of applied 

mechanics concerned with the behavior and diagnosis 

of rotating structures such as turbines, engines and 

computer disk storage. Rotor dynamics can be divided 

into three different types of motion, lateral, 

longitudinal and torsional. Lateral is also called bend 

rotor dynamics and is associated with bending of the 

rotor. Torsional is the modes when the rotor is twisting 

around its own axis. Longitudinal modes are when the 

rotor parts are moving in axial direction (Samuelsson, 

2009). 

A simple approach to rotor dynamics study is often 

attributed to the Jeffcott rotor model. The model 

consists of a single disk centrally located on a circular 
shaft considered with damping. Many variations of 

Jeffcott rotor have been studied but its most frequent 

features are a single, rigid disk mounted on a circular, 
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flexible shaft, which is supported by bearings at each 

end. 

The dynamic behavior of flexible rotor systems 

subjected to base excitation (support movements) is 

investigated theoretically and experimentally in the 

paper by (Duchemin et al., 2006). The paper has 

developed a mathematical model for total energy of the 

system and the equation of motion has been derived 

using energy method. The study focuses in bending 

near the critical speeds of rotation. 

In the research paper (Hsieh et al., 2006), a modified 

transfer matrix method for the coupling lateral and 

torsional vibrations of symmetric rotor-bearing systems 

have been used. Euler’s angles are used to describe the 

orientations of the shaft element and disk and several 

numerical examples are presented to demonstrate the 

applicability of this approach. 

A similar approach has been used in the developing the 

mathematical model for energy and then the equation 

of motion of the multi-rotor system in the dissertation 

work (Paulo, 2011) with aid of Euler’s angle 

orientation and Lagrange’s equation of motion.   

3.  Development of the mathematical model 

The basic elements considered for developing the 

mathematical model are the shaft, the disks and the 

mass unbalance. The complete mathematical model has 

been developed in three phases. The equation of 

motion for the system has been derived using energy 

method. 

 Derivation of total energy of the system 

 Derivation of equations of motion 

 Solution of EOM to find the expression of 

natural frequency and responses 

3.1 Phase I – Total Energy of the system 

For the disk, shaft and mass unbalance kinetic energy T 

must be computed and in case of the shaft, strain 

energy is calculated, since it is the only flexible 

component considered. The bearings are considered to 

be rigid and undamped. 

Three reference frames are used.  

xd yd zd = fixed on the disk center 

xs ys zs = fixed with shaft  

X Y Z = fixed inertial frame 

The Disk 

The disk is considered rigid. Thus, kinetic energy is the 

only energy characterizing the component. The co-

ordinate of disk center ‘D’ is u (z, t), v (z, t) and z with 

reference to inertial frame XYZ coordinate system. 

Then, the position vector of the disk center ‘D’ in the 

XYZ coordinate system can be written in the form  

       
 
 
 
  (1) 

The orientation of the rotating element in three 

dimensional motions can be completely described 

using Euler’s angles defined via three successive 

rotations to specify the relations between the principal 

axes of the rotating frame and the fixed frame. 

The rotating sequence for defining Euler’s angle is 

done by following order 

a) Rotating the frame fixed with the disk center 

by angle ϕ about Y-axis 

b) Rotating the intermediate axis by angle θ 

about x1 axis 

c) Finally, rotating another intermediate axis by 

angle ψ about z2 axis. 

Through the coordinate transformation, the 

components of the angular velocities in the directions 

of principal axes can be found to be 

  

  

  

  

   

                       

                         

            

   

  

                  

                   

        

   (2) 

Where, θ, ϕ and ψ are Euler’s angle and              are 

the rate of nutation, rate of precession and rate of spin 

respectively. We can assume cos(θ)≈1, cos(ϕ)≈1, 

sin(θ)≈θ  and sin(ϕ)≈ϕ 

The kinetic energy of the disk is given by 

   
 

 
     

       
 

 
       

        
        

   

 (3) 

Where,   MD is the mass of the disk and IDxx, IDyy and 

IDzz are the moment of inertia about the the principal 

axis XYZ principal axis XYZ. Since the disk is 

assumed to be symmetric, IDxx = IDyy. 
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The Shaft 

The shaft is considered as a flexible element having a 

constant cross-sectional area. Thus, it has both kinetic 

and strain energies. The kinetic energy of the shaft is 

defined similar to the disk but is defined for an element 

and integrated over the length of the shaft ‘L’. 

The kinetic energy of the shaft is: 
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Where, ρ denotes mass per unit volume, S is the shaft’s 

cross-sectional area which is assumed constant 

throughout the length, and I is the second moment of 

inertia of the shaft cross-section about its neutral axis. 

 

Potential Energy of the shaft: 

Considering the strain caused by the rotation of the 

shaft, the strain energy of the shaft is given by 

 

    
  

 
   

   

    
 

   
   

    
 

   
 

 
  (6) 

 

The bearing at the support is assumed to be rigid 

described by high elastic stiffness and negligible 

damping. 

The expression for the total kinetic energy of the 

system is: 
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The potential energy of the system is   
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3.2 Phase II – Equation of motion 

Now for the first mode assuming the displacement 

function as: 

          
  

 
  (9) 

The displacements in the x and y direction for a current 

point are expressed as  
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Also, as angular displacements ϕ and θ are small, they 

are approximated as 
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Applying above expressions in the kinetic energy, it 

results: 

  
 

 
                       

 

 
     

  

        
    (12) 

With the disk situated at middle of the shaft and 

applying the displacement function: 
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The potential energy comes out to be 

       
         

     

     (14) 

Using Lagrange equation in the above obtained kinetic 

and potential energy choosing generalized co-ordinates 

as U and V, we get equation of motion as: 
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K is given by the relation as follows 

   
    

    (16) 

3.3 Phase III - Analytical solution of the 

system 

The equation of motion can be written as: 

              

                (17) 

These are two coupled linear differential equations of 

second order and their solution may be of the form 

        

         (18) 

Substituting U and V in the equation of motions and 

solving for s we get 

   
                         

   
 

 (19) 

The solution of the expression leads to two pairs of 

complex conjugate roots. The real part of the complex 

conjugate roots represents the rate of decay of the 

vibration and is given by,      
    

     
 
, where    is 

called the viscous damping factor for  mode ‘a’ and  

the imaginary part represents the corresponding natural 

frequency. Due to our assumption of undamped system 

the rate of decay of vibration is 0 in the solution. 

4. Result and Analysis 

The derived mathematical model is verified using the 

data of Pelton turbine test rig of National College of 

Engineering and for comparison simulation work is 

further carried out. 

4.1 Pelton Turbine Model 

The Pelton turbine installed at National College of 

Engineering by D-Matrix Engineering Services is taken 

as a case. A Pelton turbine model is developed in 

Solidworks 2013 for a jet diameter of 25mm as shown 

in the Figure below 

 

Figure 2: Pelton Turbine Model 

The extracted parameters which are then used for 

further calculation of natural frequency are given 

below: 

Mass of runner, MD = 11.14 kg 

mass moment of inertia of disc along x-axis,  

IDxx = 30.33×10
-3

 kgm
2
 

mass moment of inertia of disc along y-axis,  

IDyy = 30.33×10
-3

 kgm
2
 

mass moment of inertia of disc along z-axis,  

IDzz  = 55.09×10
-3

 kgm
2
 

4.2  Analytical solution 

The solution for natural frequency of the system is 

obtained from the equation (19). 

Now substituting the value of the parameter as 

provided from NCE model in a, k and m. 

Table 1: Parameters used in calculation of critical frequency 

Parameters Value 

Mass of runner, MD (kg) 11.14  

cross sectional area of shaft, S (m
2
) 1.25×10

-3 
 

density of shaft material, ρ (kg/m
3
) 7850.00  

length of shaft, L (mm) 497.00  

Ixx (m
4
) 1.256×10

-7 
 

Iszz (m
4
) 2.513×10

-7
 

E (N/m
2
) 2×10

11
  

Spin speed, ω (rad/s) 157.07  
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Then we  have, 

s1= 0+1210.8i and s2= 0+1211.0i 

Hence, the natural frequencies are 

   
      

  
           

   
      

  
           

The natural frequency of the system along the 

respective degree of freedom U and V were found to be 

192.69 Hz and 192.73 Hz repectively. 

The Campbell diagram plot using the mathematical 

model as represented in the figure below. 

 

Figure 3: Campbell Diagram 

4.3  Simulation result 

The model using the similar geometric parameters of 

the above mentioned Pelton Turbine was made and the 

corresponding material properties and real constants 

were fetched in the model. The model of the shaft, 

made using BEAM188 element was meshed with 497 

elements, with edge length of 1 mm and boundary 

conditions of a simply-supported beam were given. For 

subjecting the mass of Pelton runner MASS21 element 

was defined. 

Using the above given data the simulation results, the 

natural frequencies of the system for the cylindrical 

mode was found to be 137.86 Hz and 137.98 Hz. 

The Campbell plot for the assembly was found as 

shown in figure 3. 

 

Figure 4: Campbell Diagram with rigid support 

But in actual rotor dynamics, bearing support is the 

essential, hence the bearing stiffness is to be 

considered. Considering this, simulation of the 

assembly using bearing stiffness was done. The bearing 

element was defined using COMBI214. 

Using the bearing element the natural frequencies of 

the system for the cylindrical mode were found to be 

137.72 Hz and 137.93 Hz. 

The Campbell plot for the assembly considering the 

spring element was found as: 

 

Figure 5: Campbell Diagram with consideration of bearing 

stiffness 

4.4 Sensitivity of various parameters on 

dynamic response of the system 

With the aid of the developed model, we analysed 
various decisive parameters effect and their 

sensitiveness in the natural frequency of the system. 
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Simulation works were also carried out to determine 

natural frequency at the varied parameters. 

4.4.1  Variation of natural frequency of the 

system with change in length of the shaft 

 

Figure 6: Variation of natural frequency with change in 

length of shaft 

From equation (16), we can see that the stiffness is 

inversely proportional to L
3
 where L is the length of 

shaft. The plot shows that the frequency of the system 

decreases with increase in the shaft length. 

 

4.4.2  Variation of natural frequency of the 

system with change in diameter of the shaft 

 

Figure 7: Variation of natural frequency with change in 

diameter of shaft 

With the increase in diameter, the stiffness of the shaft 

also increases and hence the natural frequency also 

increases. The plot shows the variation obtained from 

both simulation and analytical solution. 

 

4.4.3 Variation of natural frequency of the system 

with change in stiffness of the bearing 

(simulation only) 

 

Figure 8: Simulation result of variation of natural frequency 

with change in stiffness of bearing 

The frequency was found to decrease dramatically with 

decrease in the bearing stiffness (i.e. increase in the 

clearance between shaft and bearing) and can reach 

within the operating range. 

5. Conclusion 

This paper presented the methodologies to study the 

dynamic behavior of Pelton Turbine and assembly as a 

general shaft disk system. The mathematical model for 

dynamic behavior of the Pelton turbine assembly was 

thus formulated and the analytical solution of natural 

frequency was performed. The analytical results for a 

Pelton turbine laboratory setup shows that the natural 

frequency of the system lies in a good safe range. This 

also indicates that the contemporary design procedure 

followed by the manufacturers is reliable considering 

the dynamic behavior of the system. The analytical 

solution and the simulation results were found to be in 

fair agreement. The yielded result from the two 

approaches also supports the fact that the solution 

provided by Rayleigh-Ritz analytical solution is greater 

than the simulation results.  

Furthermore the natural frequency of the system for the 

cylindrical mode i.e. fundamental mode was found to 

be less effected by gyroscopic effect as seen in the 

Campbell diagram. The major reason behind this is the 

position of the disk that was selected to derive the 

mathematical model.  

Length of shaft and diameter of shaft has been found to 

be very sensitive parameters in determining the 

dynamic behavior of the system. Also stiffness of the 

bearing is a defining factor in a real system as seen 

from the simulation work. Stiffness of the bearing is a 

function of time and as bearing clearance increases, the 

stiffness decreases and could cause a critical vibration 



Proceedings of IOE Graduate Conference, 2014 109 

 

problems decreasing the natural frequency to an unsafe 

limit after operation for certain period as seen from the 

sensitivity analysis. 
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