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Abstract

Keywords

CNN is mostly used to detect knee injuries because of its high accuracy which can extract features automatically
but has a millions of parameters and is often subjected to overconfident results. This research work introduces
distribution in weights in the last three convolutional operations which acts as an ensemble of networks,
and uncertainty is calculated from the mean and variance from the prediction of the multiple networks using
variational inference. We have used multipath Bayesian CNN to extract features from MRI of the knee from
three different planes; axial, coronal and sagittal to detect multi-label abnormalities. The Bayesian CNN model
achieved the result comparable to the pretrained model and slightly better than Montecarlo methods. When
both Bien et al. Sagittal plane and Stajduhar et al. training datasets are combined to detect ACL label of the
sagittal plane, the AUC score increased to 0.917 for the Bayesian CNN model, where the state of the art for
the similar case is 0.911. The uncertain images from training data of Sagittal plane are removed and tested
on Stajduhar et al. dataset using Alexnet pretrained model to increase the AUC of the test datasets.

CNN, MRI, Bayesian CNN, Montecarlo, AUC, Uncertainty

1. Introduction

Deep Learning has revolutionized computer vision
tasks like classification, recognition, etc. It has also
entered the field of medical images rapidly. It has also
reduced the workload of physicians, radiologists by

assisting them in classification and detection tasks.

Although deep learning has been a solution for
different medical applications, it does not quantify
risk or uncertainties. It cannot predict how a model is
confident about each prediction. Some images are
difficult to diagnose even for a trained model. When
predicting abnormalities on sensitive areas, we should
not always rely on accuracy but should also look for
confidence value. We have to look not only on
prediction but also on uncertainty. Relying on
prediction alone can be dangerous. If somehow a
model can predict how certain it is about each
prediction, then it can help physicians and radiologists
greatly. For an uncertain prediction, physicians and
radiologists can consult experts in related fields or
take different measures to diagnose an injury or a
disease. One such uncertainty estimation is by
introducing probabilistic modeling of deep neural

networks. In such cases, weights in neural networks
are assigned a probability distribution. By introducing
distribution in weights, networks become intractable,
and using a variational distribution, such distribution
in weights can be learned. Distribution in weights
provides a measure of uncertainty. The probabilistic
distribution provides confidence bound in the output
which is necessary for data analysis and decision
making. Point estimates only provide if someone has
diseased/injured or not but it is often subjected to
overconfident results and not sure if prediction makes
sense or is random. It does not tell whether to change
the model or create more diverse data or should be
more careful during the analysis of results. In an
automated system where physicians rely on models,
uncertainty can provide more information to
physicians if the test data is out of distribution.

For a binary image classifier, if the model predicts O
then it is abnormal and if the model predicts 1 then it
is normal. For a difficult image, the model may
predict 0.5. In such a case, variance of declaring
normal or abnormal would be high. Such variability
can be captured by aleatoric uncertainty. Aleatoric
uncertainty measures the noise inherent in the
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observations. It is present during the data collection

from sensors which is present in all datasets.

Increasing the dataset does not reduce aleatoric
uncertainty.

If different models are used, then there may be
different probability and variability to declare difficult
images as normal or abnormal. Such variability can
be captured by epistemic uncertainty. Epistemic
uncertainty is caused by the model itself. Increasing
data reduces epistemic uncertainty.

2. Literature Review

2.1 Deep Learning on Knee MRI

There are various ways in using deep learning on MRI
images. Due to the multidimensional and multiplanar
properties of the MRI image, there are different
architectures. Some of the architecture is single path
architecture where the image is taken from anyone
plane and some of the architecture uses multipath
architecture for more accurate prediction. Bien et
al.[1] developed CNN which predicts injuries from
three different planes. They performed nine CNN
operations for three outcomes. They achieved good
performance comparable to general physicians and
radiologist. Liu et al.[2] segmented ACL from MR
images using CNN and applied another CNN to detect
structural abnormalities in the ligament. Roblot et
al.[3] applied fast-region CNN and faster-region CNN
to detect the position of the horn, tear, and orientation
on 1123 MR images of the knee.

2.2 Uncertainty Estimation in Deep Learning

Shridhar et. al. [4] introduced uncertainty estimation
for Bayesian CNN with variational inference. They
have also estimated aleatoric and epistemic
uncertainty by normalizing the output at the final
layer, introduced distribution in weights in
convolutional layers and calculated intractable
posterior weights by Bayes by backprop. They tested
their results on different datasets such as MNIST,
CIFAR-10, CIFAR-100. They achieved the
performance equivalent to frequentist in identical
architecture. Blundell et. al.[5] introduced distribution
on weights using Bayes by backprop. They used an
expected lower bound on likelihood function to
regularize the weight by minimizing variational free
energy. They also calculated uncertainty to improve
generalization in nonlinear regression problems. They
performed the model on MNIST dataset and obtained

results equivalent to that of dropout. Kendall et al.[6],
in the paper, have breakdown the uncertainties into
two parts using moment-based uncertainty
decomposition; aleatoric and epistemic uncertainty.
Aleatoric uncertainty captures noise that is inherent to
the observation and epistemic uncertainty captures the
uncertainty in the model itself. They evaluated the
model with pixel-wise depth regression and semantic
segmentation. To approximate the posterior there are
methods like Bayesian inference and Montecarlo
sampling. Gast et. al.[7] proposed a model where
distribution is kept only at input and activation but not
on the weight. It made a model simple and agnostic to
network architecture and optimization processes. Not
including distribution in weights results overconfident
prediction for input that is not well represented in the
training data. Montecarlo sampling is another
technique to estimate uncertainty. It is like a multiple
network that learns in training and dropouts at the test
time. However, it cannot represent data uncertainty
due to sensor noise. To represent data uncertainty
Kendall et al. [6] added variance to output. It is then
trained by maximum likelihood loss on data using
Montecarlo sampling, both model and data
uncertainty can be calculated. It is unsure about the
network architecture because of the addition of
variance. Gal and Ghahramani et al. [8] proposed a
method of Montecarlo dropout that uses dropout at
every weight layer at a test time. MC dropout
averages output over many samples at the test time. In
this way, the author calculated mean and predictive
uncertainty. One advantage is that it can be applied to
trained models.

2.3 Related Works

Deodata et. al.[9] used a Bayesian Neural Network
and used uncertainty estimation to perform prediction
and analysis on a dataset. After uncertainties
estimation, they discarded highly uncertain
predictions and identified unfamiliar patterns in the
data which is classified to outliers which can be both
corrupted observation or data belonging to different
domains. The author also applied a Bayesian
approach to biomedical imaging and they identified
noise in labels as well as uncertainty. Kwon et al.[10]
have proposed Bayesian Neural Network which
breaks down variance into aleatoric and epistemic
uncertainty. They have implemented a method that
yields correct implementation of each certainty.
Uncertainty calculated gives additional insights than a
pointwise prediction. They have applied a variational
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inference technique and used to classify and segment
ischemic stroke lesion segmentation with uncertainty
in segmentation image as well. There are various
methods to calculate uncertainty estimation as
proposed by the above methods. Some of the paper
calculates uncertainty without dealing with
complexity. Gal et al.[11] calculates uncertainty using
Montecarlo dropout which does not provide true
uncertainty because it does not model predictive
probabilities. Some of the papers only calculated
epistemic uncertainty i.e. model uncertainty but
uncertainty can be from both model and data
uncertainty.

This research work calculates uncertainty using

variational approximation in the multi-label output.

Dataset consists of output from three planes which are
concatenated after the convolutional operation. Prior
distribution in weight is introduced which is
calculated using variational approximation by
minimizing KL divergence loss because of the
intractability of true posterior. KL divergence term,
which is intractable as well, is sampled using
Montecarlo approximations. The parameters are
updated using a backpropagation algorithm. During
testing, all the distribution in weights is sampled to

get the mean and variance of the predicted output.

The resulting mean and variance are then used to
measure uncertainty in the output. Variance can be

decomposed into aleatoric and epistemic uncertainty.

A detailed explanation is given in the methodology
section.

3. Bayesian Convolutional Neural
Network

In Bayesian CNN, we do not deal with the point
estimate of the weights but filters with distribution in
the weights. BCNN is a Bayesian Convolutional
Neural Network layer that consists of two
convolutional operations; one for mean and other for a
variance. Using a distribution in weight makes weight
intractable.  So, weight is approximated using
variational approximation and the predictive
probability is calculated using samples taken from the
weights. By taking a number of samples, the variance
is calculated which is used to calculate uncertainty in
the model.

Posterior probability on weights is calculated using
Bayes rule.

plx) = (1)

where,
p(x) = [ p(x.0)p(0)d0

X is an input data and 6 is the parameter that consists
of weights and biases. p(0) is the prior probability
which is in the form of N(u,6?) . p(x) is intractable
i.e. it cannot be solved. So variational inference is
used to approximate the functional form. Posterior
function p(w|D) is approximated with another
distribution g(w|D) with some variational parameters.
KL divergence is used as an optimizer. If 0 is the
parameter to be optimized then

9()pt = argKL[qg(W)Hp(w|x,y)] @)
where,

KLigo ) 1p(5.)] = [ a0()tog P20 4,

. qo(w)
6,, = / d
opt argmmg/qe (W) o8 p(w) w

—/qg(w)logp(w)dw

Where the first part is KL divergence between q and
prior p(w) which acts as a regularization. The second
part is the Expectation of the log-likelihood of
variational distribution which is used to fit the data.

6opi = argmingKL[ge (w)||p(w)] — E40 (w)log(x,y|w)
3

KL divergence is again intractable i.e. it cannot be
solved. A variational method is used to solve the
intractable part. Weight w is sampled from the
variational distribution gg (w|D) because it is easier to
sample from the variational distribution than from the
true distribution p(w—D). After sampling, the cost
function is obtained which can be optimized during
training phase given by

F(D,0) =Y logqe(D)—logp(w') —logp(Dlw;) (4)
Where n is the number of samples taken.

To account for class imbalance problems, low
occurrence labels are multiplied by higher weights
and higher occurrence is multiplied by small weights
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in the loss function. Weights are determined by the
number of occurrences of a particular label divided by
the total number of exams. To calculate derivatives of
a parameter i.e. distribution (Kingma et al. 2015)
proposed local reparameterization trick which learns
U, o for any weight. Let € be a sample of standard
Gaussian distribution, it is multiplied with standard
deviation and added with mean.

6 = (“762)

N(0,1)

fle)=w=pu+o.e

Weight consists of these parameters: value p, o that
is required. Mean is learned as in frequentist approach
which is also maximum a posterior probability of
variational posterior distribution . Variance is learned
from the second convolutional operation. It means

how much value weight (w) deviates from the mean.

To ensure variance never reaches zero, the softplus
activation function is used.

3.1 Sampling the Variational Distribution

During testing for classification, predictive distribution
is given by p(Vrest | Xrest)s Where xg. is a test data and
Viest 18 a predicted class.

p(ytext|xtest) = /P(Xtemw)%(w)dw (5)

To compute p(Vres |Xresr), Montecarlo approximation
is used. Predictions of multiple weight samples are
taken from variational parameter gg (w).

H= Eq [p xtest Z yrest|xtestywn) (6)
n

m

Wi ~ qo(W)

0 = vargp(xien) = Eql(y —ED]))? (7
Variance can be decomposed into aleatoric and
epistemic uncertainty. Aleatoric uncertainty provides
information about the noise that is inherent to the
observation. Epistemic uncertainty provides
uncertainty in the model.

3.2 Uncertainty Estimation

Variance can be decomposed into two uncertainty
model by the equation below

T
Z diag( 0} Z

varyp (ytevt |xtevt

1 T
Aleatoric = T ,:Zi aliag(G,)2 ®)
. . 1 & N >
Epistemic = =} (i —p)(A — ) ©)

In this way, Mean, Aleatoric, and Epistemic
uncertainty is estimated. Mean value gives the point
estimate which is compared with the frequentist
approach for comparison along with the benefit of
aleatoric and epistemic uncertainty for the extra
information to out of the distribution test dataset.

3.3 Weight Initialization

Neural Network has millions of parameters that is
why initializing weights is challenging. If suitable
weights are used during initialization, the Neural
network converges otherwise it does not converge at
all. One good practice for weight initialization is to
keep random weights in suitable range. Setting
weights close to zero without making it small is
considered common practice. If n is the number of
inputs given to a neuron, a good practice is to keep the
weights in the range of [-y,y] where y =sqrt(n). For
Normal distribution, initialization of weight is O for
mean and sqrt(n) for a variance.

4. Montecarlo Dropout

Montecarlo Dropout is the dropout performed at a test
time. Dropout is used as a regularization technique
used during training, but if used during testing, it acts
as an ensemble of networks. The ensemble of
different networks help us to find the mean and
variance of the prediction which can be used as an
inference technique by estimating the uncertainty of
the prediction. The dropout layer used before every
layer in the network is also considered as a Bayesian
approximation. When a small dropout is used, it
eliminates Montecarlo sampling, and when a large
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dropout is used, it requires more iterations to
converge. Dropout enabled at a test time generates
different output at every forward pass. From the first
and second moments of those forward passes,
uncertainty can be estimated.

5. Methodology

5.1 Model Architecture

Model Architecture consists of the architecture which
consists of 5 convolutional operations as shown in the
Figure- ??. The first two layers are tuned to weights

from the Alexnet model trained in Imagenet datasets.

For the remaining last three layers gaussian
initialization is used for the Bayesian CNN model and
random initialization for the Montecarlo dropout
method. s*256%256 size of an input image is reshaped
to s*3%224*224 after the preprocessing, where s is a
series of an image in exams and 3 is the number of
channels. Then it is passed to the architecture. In the
Bayesian CNN model, the convolutional operation is
performed twice for both mean and variance. In this
way, distribution in the weights is introduced. The
reparameterization trick is introduced which combines
mean and variance with Gaussian noise so that
gradients can be defined in the forward pass. The
weights of both mean and variance are updated using
the backpropagation algorithm. Instead of sampling
weights from combined mean and variance, Gaussian
noise is sampled during the forward pass. Dropout of
0.2 is kept at the last three convolutional layer to
reduce the complexity of the model in the Bayesian
CNN model. The average pooling layer is inserted
after the last convolutional operation and the
maximum values of each series of exams are taken. It
is done in all three planes and the output results are
concatenated with each other which becomes
768-dimensional vectors after flattening. It is then
mapped to the output layer. In the Montecarlo method,
there is a single convolution operation, unlike the
Bayesian CNN model. The weights are updated using
backpropagation and Adam optimizer. The loss
function used is binary cross-entropy. After the
training is completed, dropout is introduced at the test
time, which generates multiple forward outputs. The
first and second moments of those outputs can be used
to estimate uncertainty in the model. Because of
multi-label output, this architecture is performed on
each label to estimate both the mean and variance of
the output prediction.

To calculate uncertainty in a model, distribution is
added to the weights of a model architecture. Prior
distribution p;j., is added which is in the form of
N(u,02) and posterior distribution on parameter
p(0]x) is calculated using Bayes rule as discussed in
section 3.

b= Apx i+ ) A2 5 (01.p?) (10)

The reparameterization trick is to sample from
parameter-free distribution and then transform € with
a deterministic function b so that gradients can be
defined. The distribution function b consists of two
convolutional operations. In the first convolution
operation, it is treated as a frequentist convnets and
optimized using backpropagation. In the second
convolutional operation, the variance is learned. The
gradients are calculated using a backpropagation
algorithm which are same for both mean and standard
deviation. Instead of weights, sampling is taken from
b for computational acceleration. The mean value U is
learned from the first convolutional operation and in
the second convolutional operation « is learned as
mean W is already learnt in first convolutional
operation. The mean value is added to the outcome of
the second convolution operation multiplied by € to
obtain deterministic function b. Bayes rule is used to
calculate posterior which is intractable. The
variational inference technique is used to approximate
posterior as shown in by the given equation.

F(D,6) 2 logqe(D)—logp(w') — logp(D|w;)
(11)

The first two-term in the equation is data-independent
and is calculated in each layer. It also acts as a
regularizer in the network. The last term is the
data-dependent term and is evaluated at the end of the
forward pass. The last term is also called maximum
likelihood estimation which is same as conventional
loss function in deep learning. In our case, the binary
cross-entropy loss function is used for its estimation.
The weighted binary cross-entropy is used to tackle
the class imbalance problem. The value computed
from the first two-term is in the range of 106, so the
last term is multiplied by 106 for the numerical
stability of the network. = Now that posterior
probability is approximated to obtain the variational
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Figure 1: Model Architecture

parameters, it is then used to predict never seen data
i.e. test dataset. The test data is passed through the
model which generates different output each time
when test data is passed. Montecarlo approximation is
used where multiple weight samples are taken and the
average value is calculated. In this way, mean and
variance are calculated from multiple samples and
then it is decomposed to aleatoric and epistemic
uncertainty as given by 8 and 9.

5.2 Datasets

Dataset [1] consists of 1,250 knee MRI exams from
three different planes; Saggital, Coronal, and Axial
planes. Dataset is split into training, validation and
test sets in ratio 80:10:10 respectively. Publicly
available dataset from gtajduhar et al.[12] which
consists of 917 sagittal PD-weighted exams from a
Siemens Avanto 1.5-T scanner at Clinical Hospital
Centre Rijeka, Croatia. There are three labels of ACL
disease; non-injured (690 exams), partially injured

(172 exams), and completely ruptured (55 exams).

Dataset is split upon 60:20:20 ratio into train,
validation and test set then the model is optimized
using external training and validation set to
discriminate between non-injured and injured ACL.

6. Results

Table 1: Performance metrics of various models

AUC Aleatoric Epistemic
Bayesian CNN
(Abnormal) 0.87  0.096 0.005
Montecarlo Dropout
(Abnormal) 0.85 0.173 0.00088
Pretrained Alexnet 03
(Abnormal) ’
Bayesian CNN
(ACL) 0.86 0.12 0.0049
Montecarlo Dropout
(ACL) 0.84 0.18 0.00055
Pretrained Alexnet 03
(ACL) '
Bayesian CNN 075 0.168  0.0036
(Meniscus)
Montecarlo Dropout, ;5 1 0.00097
(Meniscus)
Pretrained Alexnet
(Meniscus) 0.76

We can observe that the AUC score of the Bayesian
CNN and pretrained model are similar, and the AUC
score of the Montecarlo dropout is slightly less than
that of Bayesian CNN. The Aleatoric uncertainty is
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nearly similar in both Bayesian CNN and Montecarlo
dropout method as it provides the information about
the data uncertainty, whereas epistemic uncertainty is
higher for the Bayesian CNN which indicates
Montecarlo dropout has a higher model uncertainty
than a Bayesian CNN model.

Table 2: Performance metrics of various models of
Sagittal plane of ACL label

.. (with additional
additional ..
. training)
training)
Bayesian CNN 0.877 0.917
Montecarlo dropout  0.85 0.903
Bien et al. [2] 0.824 0911
Stajduhar et al. [2,5] 0.89
Alexnet model
after rejecting 0.891 0.923

uncertain images

External dataset is formed on Stajduhar et al. dataset
[12]. Dataset consists of 917 sagittal MRI images. It
is split in 60:20:20 ratio into train, valid and test
dataset. For validation, the model is trained on the
Stanford sagittal plane and ACL label and tested on

the Stajduhar test dataset with no additional training.

The model achieved 0.87 for the Bayesian model and
0.85 for the Montecarlo model.
Stajduhar training datasets are combined with the

Furthermore,

Bien et al. training datasets to detect the ACL injury.

The model achieved the AUC score of 0.917 for the
Bayesian CNN model. The results obtained are shown
in the table above. Aleatoric uncertainty is in the
range of 10~!, whereas epistemic uncertainty is in the
range of 1073 for both the labels. Given that the AUC
score for both the models is high, their uncertainty is
also similar and in the same range. As the test AUC
increases in the model, epistemic uncertainty

decreases [4] which can be observed in the results.

The uncertain images from training the ACL labels in

the Bayesian model on sagittal plane of Bien et al.

dataset without additional training are removed and
retrained using Alexnet pretrained model and the
AUC score obtained is 0.89 on the test dataset of
Stajduhar test datasets, whereas the model trained by
Bien et al. has the AUC score of 0.824, and when
trained with an additional training dataset of Stajduhar
et al. dataset, the AUC score obtained is 0.923,
whereas the model trained by Bien et al. is 0.911.

7. Conclusion

Hence, probabilistic modeling of weights is
performed on multi-label 3D knee MRI data. For
multi-label problems, the model is trained separately
for each label. The obtained result is compared with
pretrained models that are trained on 14 million
images of ImageNet datasets. Although the pretrained
model converges faster, it has an overfitting problem,

and it cannot incorporate uncertainty. The
probabilistic modeling of weights acts as a
regularization technique with the benefit of

uncertainty estimation. Uncertainty is estimated from
the mean and variance obtained from the sampling of
weights of variational posterior which is used as extra
information during the diagnosis of the patients. Both
Bayesian and Montecarlo methods can be used as an
inference technique to estimate the uncertainty. The
AUC of abnormal, ACL, and meniscus for Bayesian
model is found to be 0.87,0.86, and 0.75 respectively.
The obtained result is comparable to the pretrained
Alexnet model and is slightly better than a Montecarlo
method. For external validation, the dataset is trained
on a sagittal plane on Bien et al. dataset for the ACL
label and is tested on Stajduhar test dataset without
further training. The obtained AUC score for the
Bayesian and Montecarlo Dropout method is 0.87 and
0.85 respectively. After adding both Bien et al.
dataset and Stajduhar et al. dataset, the AUC score
obtained is 0.917 for the Bayesian model and 0.903
for the Montecarlo dropout method, where the state of
the art for the similar case is 0.911 as obtained by
Bien et al. [2]. The uncertain images i.e. noisy images
obtained from the Bayesian model is removed from
the training and then trained again using pretrained
weights from Imagenet improved the AUC score of
the test dataset of Stajduhar et al. dataset to 0.891
without additional training and 0.923 with the
additional training. The uncertainty is breakdown into
two part; aleatoric and epistemic uncertainty.
Aleatoric uncertainty provides information about data
uncertainty, whereas epistemic uncertainty provides
information about model uncertainty. From the result,
we can see that aleatoric uncertainty is in the same
range for all the labels as it is trained on same
datasets, whereas epistemic uncertainty decreases
when the test AUC increases as obtained in the result
section. Also, Montecarlo methods has a higher
model uncertainty than a Bayesian model that can be
observed from the AUC score of the labels in both
Bien et al. and Stajduher et al. datasets.
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8. Future Works

To reduce the number of parameters, we can
experiment on different hyperparameters like depth of
the filters, strides, etc. that may result similar
performance to that of obtained result but with fewer
training time. In the future, uncertainty can be
introduced in the localization of the injuries as well
which can provide more information about the
injuries.
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