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Abstract
The power of machine learning in the field of image processing has increased dramatically because of the
advancement in deep neural networks. Many works on handwritten English, Arabic, Chinese, and Japanese
scripts have previously been completed. So, this paper aims to develop Nepali Handwritten letter and words
Generator using Generative Adversarial Networks (GAN). Basically, the Nepali script has 12 vowels, 36
consonant basic forms, ten numeric charcters, and a few special characters. Moreover, there are some special
characters in the script. The input that is used is a low resolution noise image i.e 100-dim z-vector generated
by a uniform distribution with a range of -1.0 to 1.0. The dataset used for this paper comprises of Nepali
handwritten letter and word dataset both in Devanagari script. And using those dataset in GAN Network it
was discovered that recognizable and readable Nepali handwritten letters and words could be constructed by
merely beginning from noise.
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1. Background

The Brahmi script gave rise to Devanagari. Scholars
speculate that the word Devanagari is a mix of two
Sanskrit words, ‘Deva’ (God, ruler, or Brahmans) and
‘Nagari’ (language) (city). Devanagari is the only
script with particular signs (graphemes) for the
phonetically organized sounds of human speech
(phonemes), yet it is flexible enough to represent
foreign sounds by attaching marks to the closer
grapheme.

GANs have become increasingly popular among
researchers in recent years due to their ability to learn
high-dimensional, complex data distributions in the
field of recognition [1] and generation. GANs are part
of the generative models family. However, unlike
autoencoders [2], given any encoding, generative
models can generate new and meaningful outputs. By
training two competing (and cooperative) networks
referred to as generator and discriminator, GANs can
learn how to simulate the input distribution (also
sometimes known as critic). The generator’s main job
is to continuously figure out new ways to create bogus
data or signals (including audio and images) that can
mislead the discriminator. Similarly, the discriminator

has been taught to differentiate between bogus and
real images. The discriminator will no longer be able
to distinguish between the synthetically generated
data and the actual ones as training advances. From
there, the discriminator can now be removed, and the
generator can be used to generate new realistic images
or outcomes that have never been seen before.

The figure 1 below depicts the Generative Adversarial
Network’s core design.

Figure 1: Basic Architecture for GAN.

A generative adversarial network (GAN) has two
parts: The generator, which learns to generate
plausible data, and the discriminator, which learns to
tell the difference between the generator’s fake data
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and genuine data. When training begins, the generator
generates clearly bogus data, which the discriminator
soon recognizes as such. Both the generator and the
discriminator are none other than neural networks.
Here, the discriminator input is directly connected to
the generator output. The discriminator’s output or
classification gives a signal that the generator uses to
update its weights via backpropagation.

Although several papers has been emerged for
classification of other languages such as hindi and
English letters and as well as Nepali handwriting
letter classification using CNN, there still lack a
generator for Nepali handwriting letters and words.
As a result, the goal of this article is to use Generative
Adversarial Networks to create a Nepali Handwriting
Letter Generator and a word generator. Thus, the
methods that will be employed in this project begin
with automatic pre-processing. Then the combination
of generator & discriminator handles the generation
part. For betterment in the result we could use other
refinement techniques if required. We will use these
two different datasets for letters and words separately
in Devanagari script.

2. Related Work

i) Devanagari Script Character Recognition using
Genetic Algorithm: The automatic or digital
translation of handwritten, typewritten, or printed text
images into machine editable text is referred to as
character recognition in this paper[3]. The input
image is scanned and then proceeded further for noise
removal. The images are then normalized in the form
of grayscale and is converted to binary image by
taking some threshold value and the obtained binary
formed image is then extracted to provide a shape to
them by thinning mechanism. Furthermore, the
pre-processed image then goes through a
segmentation which provides a character image with
some information. Then, finally the feature extraction
technique is used to remove that information from the
image. Different problems occurred in the system
could have been solved even if genetic algorithm is
not used in this paper.

ii) Offline Hindi Handwriting Character Recognition:
This paper [4] is primarily concerned with the
recognition of the characters created by a human
when writing with pen/pencil on paper, which is then
scanned into digital format via a scanner. The most
common neural network which is used in this system

is multilayer perception with feed forward networks.
It’s still unclear how the combination technique can
properly exploit the strength of sub-classifiers and
deal with the balance between effectiveness and
combinations. The majority of the errors that occur
during the recognition of printed characters are caused
by erroneous character segmentation of touched or
broken characters.

iii) Nepali Handwriting Recognition using
Convolution Neural Network: This paper [5] was
proposed to analyze and recognize handwritten Nepali
character using Convolution Neural Network. The
preliminary experiment included 92 thousand photos
of 46 different classes of 32 * 32 characters of Nepali
handwriting that were subjected to several
pre-processing phases such as clipping and cropping,
grayscale conversion, and feature extraction, among
other things. The recognition has been experimented
with the help of template matching technique. In
character recognition, the convolution neural network
model outperforms the Feed Forward neural network.

iv) Development of English Handwritten Recognition
Using Deep Neural Network: The goal of this paper
[6] is to create a DNN-based offline handwritten
recognition system. First, MNIST and EMNIST, two
popular English digits and letters databases, were
chosen to provide dataset for DNN training and
testing. There are ten digits [0-9] and 52 letters [a-z,
A-Z] in total, and the proposed DNN uses two auto
encoder layers and one softmax layer stacked on top
of each other. Performance comparision has been
done among patternnet, feedforwardnet, and proposed
DNN.

v) Bangla Handwritten Digit Recognition and
Generation: Here a Semi-Supervised Generative
Adversarial Network or SGAN, was used to generate
Bangla handwritten numbers in this article [7], and it
successfully created Bangla digits. On the BHAND
dataset, the architecture achieved a validation
accuracy of 99.44%, outperforming Alexnet and
Inception V3 architecture.

vi) A System for Offline Character Recognition Using
Autoencoder Networks: This article [8] builds DNNs
by stacking Auto-encoders that have been trained in
an unsupervised layer-wise method. Then, using two
and three hidden layer DNNs, they did supervised fine-
tuning to train the complete network and gave findings
on Consonant and Vowel Modifier Datasets. After
combining classifiers to form an ensemble classifier
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of four different two hidden layer networks, it has
94.25% accuracy on consonant data and 94.1% on
Vowel Modifier Dataset, which increases to 95.4% for
consonant and 94.8% for Vowel Modifier Dataset.

3. Methodology

3.1 Model Development

Here the model aims to produce realistic looking
handwritten images beginning with the low resolution
noise input as previously done in earlier research
based on handwritten images in order to stabilise
GAN [9]. And replacing noise by some input, this
paper aims that it would be a base to reconstruct even
the distorted handwritten letters and words from old
historical books and papers. This can be achieved
using a deep learning approach which is shown in
figure 2.

Figure 2: Research methodology.

3.2 Datasets

We use Devanagari (Nepali) Handwritten Character
Dataset, which contains 92 thousand images of 46
different classes of Devanagari script characters, and
Devanagari Dataset (IIIT-HW-Dev), which has over
95K handwritten words, as our dataset. And this
dataset will be used to train in order to generate
Nepali letters and words. The handwritten datasets
were preprocessed first. And then we reshape it again
using our methods during this experiment. The
dataset samples used are shown in figure 3.

Figure 3: Dataset Samples

3.3 GAN model

In domains like semi-supervised learning and image
to image translation, GANs are the tip of the spear,
and they’re commonly implemented using two neural
networks: the Generator and the Discriminator. These
two models then compete against one another in a
game context. The GAN model would be trained using
both real data and generated data. The discriminator’s
main task is to distinguish between bogus and real data.
Because the generator is merely a learning model, it
is likely to produce low or even fully noisy data that
does not match the true distribution or features of the
real data at first. Our generator is essentially a decoder
that receives random Gaussian vectors (100 elements
of noise) and generates 28x28x1 images, which are
then handed to the discriminator, a normal CNN, to
determine whether they are real or false.

The model starts with some noise, commonly
Gaussian noise, and outputs an image in the form of a
vector of pixels. After then, the generator must figure
out how to deceive the discriminator and win a
positive categorization (produced image classified as
real). When any of those created images is
successfully recognized as ”fake” by the discriminator,
the loss of the creation step is computed. The
discriminator must gradually learn how to distinguish
between real and fraudulent images. When the model
fails to distinguish a bogus image, the discriminator is
assigned a negative loss. The basic principle that will
be used here is that the generator and discriminator
are both trained at the same time.

The basic GAN model architecture that we have used
in this paper consists of usual elements as shown below
in figure 4.

Figure 4: Used GAN Model Architecture.
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Figure 5: Discriminator Architecture.

As shown in figure 5 above, the input of discriminator
is the real/generated images of size 28×28×1. There
are four CNN layers. Except for the last convolution
that uses strides=1, each Conv2D uses strides = 2 to
down sample the feature maps by two. The size of the
kernel is 5. Similarly the second, third and fourth layer
consists of 2D convolution with filter size of 64, 128,
and 256 respectively. Each convolution is followed by
Leaky ReLU as activation function with alpha value
of 0.2. The output of fourth layer is then fed to dense
layer, which is fed to dense units of 1 as output for real
and fake output using sigmoid activation function. The
learning rate used is 2e-4 while the decay is 1e-4. The
learning rate of the adversarial is set equal to half of
the discriminator so that it will result in a more stable
training.

Figure 6: Generator Architecture.

As shown in figure 6 above, the Generator starts with
a noise vector z. The generator learns to generate fake
images from 100-dim input vectors. The discriminator
then classifies real from fake images but inadvertently
coaches the generator how to generate real images
when the adversarial network is trained. The kernel
size used in our implementation is 5. The generator
accepts the 100-dim z-vector generated by a uniform
distribution with a range of -1.0 to 1.0. The first layer
of the generator is a 7 × 7 ×128 = 6,272 unit dense
layer. The number of units is computed based on the
intended ultimate dimensions of the output image (28
× 28 × 1, 28 is a multiple of 7) and the number of
filters of the first Conv2DTranspose, which is equal to
128. We can also assume transposed CNNs
(Conv2DTranspose) as the reversed process of CNN.
Then we reshape the vector into a three-dimensional
hidden layer with a small base (width × height) and

large depth. Using the transposed convolutions, the
input is progressively reshaped such that its base
grows while its depth decreases until we reach the
final layer with the shape of the image we are seeking
to synthesize, 28 × 28 × 1. After undergoing two
Conv2DTranspose with strides = 2, the feature maps
will have a size of 28 × 28 × number of filters. Each
Conv2DTranspose is preceded by batch normalization
and ReLU. The final layer has sigmoid activation that
generates the 28 × 28 × 1 fake images. At the final
layer, we do not apply batch normalization and,
instead of ReLU, we use the sigmoid activation
function. GAN views the total of the discriminator
and generator losses as a zero-sum game for training
the generator. The negative of the discriminator loss
function is the generator loss function:

L(G)(θ (G),θ (D)) =−L(D(θ (G),θ (G)) (1)

This can then be rewritten more aptly as a value
function:

V (G)(θ (G),θ (D)) =−L(D)(θ (G),θ (D)) (2)

The generator training criterion can be written as a
minimax problem:

θ
(G)* = arg min

θ (G)
max
θ (D)

V (D)(θ (G),θ (D)) (3)

Due to custom training, we do not use the usual fit
function. The generator is then trained via an
adversarial network. The training first randomly picks
a batch of real images from the dataset. This is
labeled as real (1.0). Then a batch of fake images will
be generated by the generator. This is labeled as fake
(0.0). The two batches are concatenated and are used
to train the discriminator.

The two networks are trained alternately for about
20,000 steps. At regular intervals, the generated results
based on a certain noise vector are saved on the google
drive. The generator model is also saved on a google
drive so we can easily reuse the trained model for
future generation purpose.

3.4 The Training Objective Function

A minimax function can be used to represent the
objective function in this case. We can execute
gradient ascent on the objective function since the
discriminator tries to maximize the objective function.
Because the generator’s primary goal is to minimize
the objective function, we may use gradient descent to

1307



Generating Nepali Handwritten Letters and Words Using Generative Adversarial Networks

reduce the objective function’s size. Finally, the
network can be trained by alternating between
gradient climb and descent. Considering the GAN
problem a min-max game, the loss function for the
Discriminator is represented as:

JD = Ex∼pr log[D(x)]+Ez∼pg log[1−D(G(z)] (4)

Here, Ex denotes expectation across either x (true data
distribution) or z (latent space), D denotes the
Discriminator’s function (mapping picture to
probability), and G the Generator’s function (mapping
latent vector to an image). This first equation is
somehow similar to any binary classification problem.
Getting rid of the complexity, we can rewrite this
equation as follows:

JD = D(x)–D(G(z), f orD(x),DG(z) ε(0, 1) (5)

Above equation shows that, our Discriminator is
attempting to reduce the chances of mistaking a real
sample for a fake one (first part) or a fake sample for a
real one (second part). Similarly, the Generator’s loss
function is:

JG =−JD (6)

We only have two agents and they are competing
against each other, it is obvious that the Generator’s
loss would be a negative of the Discriminator’s. As a
result, we have two loss functions, one of which is the
inverse of the other. The adversarial nature here is
clear. The Generator is trying to outsmart the
Discriminator.The Discriminator is nothing more than
a binary classifier. The Discriminator also only
produces one number, but not the binary class. As a
result, it is penalized for its arrogance.

3.5 Experimental tools

The tools and software’s used in this project work are
listed below:

a) Python

• Tesorflow Library

• Keras

• Python Imaging Library

b) Google Colaboratory

c) Kaggle

The whole experiment is carried out in Google
Colaboratory. Kaggle is used to store and load the

datasets into our colab notebooks. Tesorflow is a
machine learning platform that is open source and it’s
preferable to think of it as a vast and adaptable
ecosystem of tools, libraries, and other resources that
enable high-level API processes. This framework
provides different layers of concepts from which you
may pick to develop and deploy machine learning
models. Keras, on the other hand, is a high-level
neural network library that runs on top of TensorFlow.
Keras enables for easy and quick development as well
as smooth execution on GPU and TPU when used in
deep learning. This framework is written in Python
programming language, which is simple to code,
debug and as well as it enables for straightforward
expansion.

4. Results

4.1 Training Details

The constructed model is able to generate the Nepali
handwritten Letters and words in Devanagari script.
The results were obtained by implementing the training
parameters as follows.

Input image size: 32

Image re-size: 28

Batch size: 64

Latent size: 100

Learning rate: 2e-4

Decay: 6e-8

Optimizer: RMSprop

Training steps: 20000 for letter and 15000 for words

Discriminator and Adversarial Loss: ’binary cross-
entropy’

Using these parameters, we train the discriminator and
generator networks alternatively by batch. At first, the
discriminator is trained with properly real and fake
images. And then adversarial network is trained next
with fake images pretending to be real. And then the
results were recorded on these hyper-parameters.

4.2 Output

The output images obtained for the Nepali letter
datasets were saved in filesystem. The output as per
training steps are shown below as 1000, 5000, 10000,
20000, 25000 and 30000 training steps respectively.
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Figure 7: Output results for Nepali letters in
progressive training steps.

The output as per training steps for Nepali words are
shown below as 1000, 5000, 10000, 20000, 25000 and
30000 training steps respectively.

Figure 8: Output results for Nepali words in
progressive training steps.

The output as per training steps for Nepali complex
words are shown below as 1000, 5000, 10000, 20000,
25000 and 30000 training steps respectively.

Figure 9: Output results for Nepali complex words in
progressive training steps.

The discriminator vs generator loss and discriminator
vs generator accuracy for Devanagari letters for first
5000 Training steps were plotted and is shown in figure
10 and 11 respectively

Figure 10: Dloss vs Gloss for Nepali letters

Figure 11: Dacc vs Gacc for Nepali letters
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The discriminator vs generator loss and discriminator
vs generator accuracy for Devanagari words for first
5000 Training steps were plotted and is shown in figure
12 and 13 respectively

Figure 12: Dloss vs Gloss for Nepali words

As shown in figure 12, the generator and discriminator
loss is comparatively higher at the beginning which
comes to decline at increasing no of training steps.
And then it seems to be constant with some slight
changes only on further progressive training steps. As
there seems some variance in generator and
discriminator losses, it is so because the generator and
discriminator are competing against one another and
with the betterment of one there occurs the increase in
the loss of the other.

Basically, the major goal of deep learning models is
all about minimizing the losses. But in the case with
GANs and especially handwritten images it is not
favourable. It is so because a lower generator loss
does not always imply a higher image quality. The
generator loss is eventually compared to the present
discriminator, which is actually improving all the time.
As a result, the loss function at different places cannot
be compared.

Figure 13: Dacc vs Gacc for Nepali words

The discriminator accuracy for detecting actual photos
begins at a relatively high level, whereas the accuracy
for detecting fraudulent images begins at a low level.
At the completion of the training phases, the accuracy
oscillates and becomes stable with variance, as
illustrated in figure 13. High-quality images are

produced, When the generator and discriminator are
in a stable state of operation, , however whenever
there is a significant variance loss, then lower-quality
images are produced.

The discriminator vs generator loss and discriminator
vs generator accuracy for Devanagari complex words
for first 5000 Training steps were plotted and is shown
in figure 14 and 15 respectively

Figure 14: Dloss vs Gloss for Nepali complex words

Figure 15: Dacc vs Gacc for Nepali complex words

5. Discussions

The handwritten word datasets were of different sizes
initially. They were rehaped automatically into shape
of 28*28. Large no of experiments were performed
before the correct output appeared. On using the
normalization operation on the individual image in the
word dataset while training, output images appeared
to be completely black. Output obtained due to use of
normalization at 5000 and 10000 training steps as
shown below:

Figure 16: Output obtained due to normalization

Also while using our handwritten pre-processed
dataset as RGB i.e as value of 3 and size of 256, the

1310



Proceedings of 10th IOE Graduate Conference

blue color distorted outputs were obtained. Output
obtained due to this experiment at 4000 and 5000
training steps as shown below:

Figure 17: Output obtained while taking image as
RGB

The word dataset used is of the format- black letter in
a gray background. So, on reshaping and normalizing
step during training, the images got distorted into dark
black colors due to which the output appeared all black
as the noise gets trained on that particular dark image
on progressive training steps. Due to this factor, we
were not able to generate the desirable output. So after
eliminating normalization step and using the value
gray for ‘cmap’ while plotting the images, we were
able to generate Nepali letters and words after several
training steps.

6. Conclusion

Although the images generated by the proposed model
are not real, they are easily recognizable and readable
as real letters and words. And this is an impressive
achievement, given that proposed model only used
a simple two-layer network architecture for both the
Generator and the Discriminator.

The proposed GAN framework is incredibly adaptable
and can be used to solve variety of fascinating
problems.

Finally, GAN Network was applied in this research
to the problem of Nepali handwriting generation and
discovered that Nepali handwritten letters and words
could be constructed by merely beginning from noise.

This thesis can be improvised in future by improving

the quality of images generated and can be further
implemented in order to reconstruct letters and words.
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