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Abstract
Landslides are one of the world’s most dangerous natural hazards. On Nepal’s steep hills, preventing
landslides is very difficult. Furthermore, there are few real-time monitoring systems, either to collect field
data or connect to warning systems. Techniques that allow for the rapid identification of landslide-prone
areas while avoiding the need for substantial field data are necessary in such a situation. The evaluation
of landslide hazard is a complex procedure that frequently depends on an index, a statistical connection,
or a physical process. Owing to developments in computer science, machine learning approaches have
lately been effectively used in identifying landslide dangers with greater precision. Due to its high number
of steep hills, the Sindhupalchowk district is one of the areas of Nepal that are most prone to landslides.
The landslide susceptibility map of the research area was generated using the optimal input parameters and
independent variables in the form of conditional factors using the multi layered perceptron python script, which
normalizes the susceptibility indices from 0.1 to 0.9. This script prepares data, tunes settings for best results,
and generates the susceptibility map as a deliverable in three phases. Further, four landslide susceptibility
classifications were defined using three threshold percentages (56%, 28%, and 10%) of digitized landslide
occurrence (training and validation datasets).The ROC analysis was performed to evaluate the accuracy of
the models. The calculated AUC values for success and prediction rate were 84.83% and 84.8%, respectively.
According to the categorization, the rate is excellent (0.8-0.9), indicating that the landslide susceptibility is fairly
accurate. Landslide susceptibility mapping is an important technique for predicting the likelihood of landslides
in steep terrain. As a result, reliable landslide prediction models are essential. This study was conducted for
the Sindhupalchowk area and yielded positive results that may be extended to other places after retrieval of
trustworthy parameters.
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1. Introduction

Landslides are among the most catastrophic natural
hazards globally, causing substantial financial loss and
hundreds of deaths and injuries each year [1].Due to
the country’s geographical diversity and geological
features, and significant rain during the monsoon
season, landslides, debris flows and floods are
widespread [2]. It is essential to conduct a thorough
examination of landslide processes, comprising
susceptibility mapping, hazard mapping, and risk
assessment, to prevent or monitor concerns caused by

mass movement patterns.However, Nepal lacks
real-time monitoring systems for gathering field data
or connecting to warning systems. As a result, the
country’s socioeconomic position remains a crucial
impediment to assessing susceptibility and risk [3]. In
such a circumstance, techniques that allow for fast
identification of landslide-prone regions while
eliminating the need for extensive field data are
required. In general, the safest precautionary
strategies are prevention and avoidance [4]. In
addition, since most Nepalese people are financially
weak and have little property, avoidance is also
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unlikely. Moreover, for the time being, alerting
current settlements and preventing the future could be
Nepal’s best option. Evaluating landslide hazards is a
complex procedure that frequently depends on an
index, a statistical connection, or a physical process.
Thanks to developments in computer science,
machine learning approaches have lately been
effectively used in identifying landslide hazards with
greater precision. However, there is no agreement on
which method or set of methods can provide the most
accurate prediction [5, 6]. The most accurate
landslide assessment for a given location is dependent
on more than just the quality of the data used [7, 8]. It
also depends on the modelling techniques employed
[9]. However, due to a dearth of historical landslide
databases and current geospatial data, relatively little
research in Nepal, particularly in mountainous
regions,have employed the machine learning methods
like neural network, random forest, logistic regression,
frequency ratio methods and different other methods.
Furthermore, the current findings are stand-alone and
have not been integrated into any national or regional
databases.

Much effort has gone into understanding the
susceptibility of shallow landslides and the rainfall
requirements for giving early warnings that can assist
in avert landslides [10]. Previous research has used
various methods to assess shallow landslide
susceptibility, including heuristic, mathematical, and
deterministic approaches, assuming that prospective
slope collapses have higher chances of occurring
under similar issues that caused previous and current
instability [11, 12, 13, 14]. This topic is not new, but
it has not been thoroughly researched, particularly in
Nepal’s mountainous regions. However, this study
differs from previous studies. It uses a multi-layer
perceptron (MLP) neural network script in
conjunction with a GIS user interface to perform data
preparation, MLP parameter tuning, and susceptibility
map and success rate estimation in a relatively short
time without sacrificing reliability.

2. Study area

The Sindhupalchowk District is situated in central
Nepal, at an elevation of 750–7080 meters, and
includes a total area of 2542 km2. The yearly average
rainfall is around 2500 mm, and the temperature
fluctuates between 7.5° and 32° Celsius. The terrain is
hilly and rich in natural resources, and the people rely
primarily on agriculture for a living. The terrain has

steep to moderate slopes and geological
characteristics that cause slope instability [15]. The
location map of the study area is presented in
Figure 1.

dd
Figure 1: Map showing the location of
Sindhupalchowk District

3. Methods and Data sources

Artificial Neural Network Neural networks are
robust machine learning systems consisting of
neurons or processing elements arranged in layers. By
addressing the non-linear relationship between a
landslide inventory and causative factors (CFs), an
artificial neural network (ANN) may be utilized to
categorize landslides [16]. An ANN comprises many
layers along with varying numbers of neurons, and the
output value is weighted before being fed into other
neurons [17]. MLP neural network (NN) training
consists of two phases. Firstly, to compute the
difference, the inputs are sent through the hidden
layers to generate output values, then compared to
pre-values. Second, the attachment weights are
fine-tuned to get the most significant outcomes with
the slightest fluctuation. Prediction can be improved
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Figure 2: Landslide distribution in study area

by assessing many CFs, although minor factors can
lead to over-fitting. Multicollinearity screening can be
used to reduce the number of CFs by reducing
high-dimensional data [18].

Rainfall triggered landslide inventory The Water
Resources Research and Development Centre
(WRRDC), Government of Nepal, provided the data
for the historic landslide inventory . Other landslide
locations were retrieved from satellite imagery and
Google EarthTM. 7159 polygons in the research area
were digitized in GIS and added to the database as
landslides. The pixel bordered by the polygon with
the highest elevation value was considered the
location of landslide initiation and was used for
further analysis. The landslide points taken into
account for machine learning are shown in Figure 2.

Causative factors Causative factors are properties
that influence the driving and opposing forces of
landslide direction of travel and their equilibrium. On
a regional scale, there are different geological,
geomorphological, and environmental features of the
ground. In other words, conditioning variables set the
stage for the landslides to occur. Causative factors in
landslide investigations are often chosen based on
examining of the landslide types and the features of
the research region [19]. Elevation, slope angle, plan
curvature, and distance to drainage networks are all
standard causative variables [20]. However, most
researchers produced landslide susceptibility maps by
arbitrarily and subjectively selecting causative

elements such as geological, geomorphological,
hydrological, and anthropogenic factors. As a result,
the selection of landslide causative variables and their
classifications is critical in LSM research. 16 CFs
were considered in this research to determine the
landslide susceptibility feeding as input to the ANN
model.The conditioning factors were analysed using
30m resolution maps. Table 1 displays the considered
data and their several sources.

4. Results and Discussion

The MLP python script was used to produce the
landslide susceptibility map of the research region
utilizing the ideal input parameters and independent
variables in the form of CFs. This script performs in
three stages: data preparation for input, parameters
optimization process for maximum performance, and
outputs the susceptibility map as a deliverable.

Factor selection To choose optimum variables, we
tested the 16 CFs for multicollinearity.Variance
inflation (VIF) and tolerance (TOL) are two often
used multicollinearity indicators [29]. A TOL of 0
and high VIF values suggest a significant
multicollinearity issue. Because all 16 CFs were
independent of one another, they served as
independent variables in the ANN analysis; shallow
slide position was utilized as the dependent variable.
The filtering resulted in 12 CFs that passed the
multicollinearity tests. Their tolerance values and VIF
are shown in Table 2.

Table 2: Final multicollinearity test table for filtered
12 CFs

Statistic R² Tolerance VIF

DEM 0.625 0.375 2.667
Slope 0.301 0.699 1.432
Profile curvature 0.253 0.747 1.338
Plan curvature 0.445 0.555 1.803
Vertical distance
to channel 0.230 0.770 1.299
Fault proximity 0.629 0.371 2.694
Drain density 0.247 0.753 1.328
TWI 0.518 0.482 2.074
SPI 0.053 0.947 1.056
Drainage proximity 0.261 0.739 1.354
Landuse 0.001 0.999 1.001
Geology 0.257 0.743 1.347
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Table 1: Landslide data layers and their features

Type Causative
factors Significance Source

Topographic

Elevation

Weather, vegetative cover and
potential energy are all subject to
change with elevation
resulting in variation in the likelihood
of landslides [21]

Department of survey,
Government of
Nepal/DEM in GISSlope

Steeper slopes have less friction,
and landslides are more likely to happen[22]

Plan Curvature

The convergence or divergence of slide
material and water in the path of
landslide velocity is influenced by plan
curvature. [23]

Profile Curvature
The driving and resistive forces inside
a landslide are influenced by profile
curvature in the direction of movement. [24]

Relative Relief

Relative relief depicts significant
fissures in slopes and reflects the
energy available for slope
failures and soil degradation [25]

Topographic
Position Index

Identification of a location as a
valley, ridge, or flat [11]

Hydrologic

Drain Proximity Distance from river lineament

Department of survey,
Government of Nepal or
Euclidean analysis in GIS

Stream Power
Index

The measure of the stream’s erosive
strength [26]

Sediment
Transport Index

depicts the erosion and
sedimentation processes [26]

Topographic
Wetness Index

The impact of topography on
hydrological cycle [27]

Drainage Density

illustrates the balance of erosive
strength of surface runoff and
resilience of surface geological
formations [11]

Vertical distance
to streams

Distance from stream centerline
in the vertical direction

Landuse Landuse
Landslides have an impact on the rate
of water flow and the ability of the soil
to store water [28]

(Karra et. al. 2021,
ESRI INC.)

Geologic
Geology

Each lithological unit is
associated with a particular
degree of weathering

Department of
Mines and Geology

Fault Proximity Distance from fault lines
Department of Mines
and Geology, GIS
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Table 3: MPL modifying parameters

Tuning parameters Selected
values

Hidden layer number: It is possible to
utilize one or more number of layers.
If just one layer is utilized,
this number must be a
neuron number in the integer format.

25

Solver: As a solver function, lbfgs, sgd
and adam may be utilized.

adam

Activation: identity,logistic, tanh,
relu can be selected

tanh

Alpha: parameter of convolution 0.001
Learning rate: Selection between
constant, invscaling, and adaptive
can be done

adaptive

Learning rate init: It is employed in
optimization of weights

0.001

Max iterations: Highest value of sample
for convergence

2000

Momentum: It is employed in the gradient
descent iteration.

0.6

Tuning MLP The AUC score was used to choose the
optimal machine learning parameter for the highest
success rate of both training and testing data. The
greater the AUC score, the more optimized the
simulation. Because of the massive amount of pixels
in the research region, our simulated hidden layer size
was restricted to a maximum of 25 layers. More
extensive layer size simulations would need more
powerful computer equipment. Additional parameters
were adjusted in trial and error while keeping the
layer size constant to improve the simulation. After
assessing the AUC values of the input parameters for
machine learning, the following parameters were
selected for the simulation, as shown in Table 3.

Shallow slide susceptibility Using the MLP
python script and the ideal input parameters and
independent variables in the form of CFs, the
landslide susceptibility map of the research region
was generated, which normalizes the susceptibility
values from 0.1 to 0.9, as shown in Figure 3. The
accuracy of the models was evaluated using ROC
analysis. The true positive rate (sensitivity) is shown
against the false positive rate in ROC curves
(1-specificity).The range of AUC values generally lies
in the range of 0.5 to 1. According to Yesilnacar and

Topal [30],there is a relationship between predictive
performance and AUC value, which may be
characterized as 0.5–0.6 (poor), 0.6–0.7 (average),
0.7–0.8 (good), 0.8–0.9 (outstanding), and
0.9–1(excellent).

The ROC analysis script requires susceptibility map
input (in raster form), train values (polygon format),
and test values as input variables (polygon format).
The outputs are the ROC curve and AUC indices of
test and train data. The prediction rate was computed
from landslide validation. The success rate of LSM
was determined by analyzing landslide training data.
The LSM was reclassified to generate 100 equivalent
areas in a GIS context for this technique. For each
class, pixel counts for train and validation landslides
were defined. The TPR and FPR were computed using
the cumulative pixel values of zones. The AUC was
then calculated using the trapezoidal formula[31]. The
prediction rate and success rate is shown in Figure 4.
The AUC values for success rate and prediction rate
were estimated to be 84.83% and 84.8% respectively.
According to the categorization, the rate comes into
the category of outstanding (0.8-0.9), indicating that
the accuracy of the landslide susceptibility is relatively
high.

Figure 3: Landslide susceptibility of study area
obtained from ANN

Susceptibility classification In this study, the
landslide susceptibility map ranges of 0-1 shows a low
to high chance of landslide occurrence. The
cumulative landslide susceptibility index (LSI) data

1090



Proceedings of 10th IOE Graduate Conference

Figure 4: ROC curve for susceptibility simulation

were split into various landslide susceptibility classes
to make the map simpler to read. However, this is not
an easy task because of lack of statistical criteria for
automatically categorising continuous data.
Furthermore, the magnitude of categorising
continuous data is uncertain since most researchers
heavily focus on their judgment to determine class
boundaries. Galang’s [32] widely used manual
classifier approach is utilized to divide the LSI values
into four different susceptibility zones (Figure 6 and
Figure 5). According to this categorization technique,
higher landslide susceptibility classes should account
for most landslide events, and successive threshold
values are halved from prior levels [32]. As illustrated
in Figure 5,, the landslide occurrence map was
contrasted to the landslide susceptibility map, and the
overall result of recorded landslides vs accumulated
LSI numbers was calculated. Four landslide
susceptibility classes were identified using three
threshold percentages (56%, 28% and 10%) of
observed landslide incidence (training and validation
datasets).A very high susceptibility area was defined
as an area that accounted for 56% of the overall
landslide incidence data. The high susceptibility area
was denoted by an LR cutoff value of 0.779, which
was utilized for the landslide runout study. The four
classes divided are labelled as very low (< 10%), low
(10-28%), moderate (28-56%) and high (> 56%). A
total of 62.52% of the region was classified as very
low, 17.27% as low, 13.00% as moderate and 7.20%
of area as highly vulnerable. The regions of the four
susceptibility classes, as well as their shallow slide
distributions, are listed in Table 7.

Figure 5: Landslide susceptibility classification using
44% cutoff value

Figure 6: Classified shallow slide susceptibility map

Shallow sliding susceptibilities were estimated in this
work utilizing well-known back-propagation ANN
machine-learning methods. Depending on the location
of the shallow slide and the CFs, the susceptibility
mapping depicts the geographical likelihood of a
shallow slide. The current study, however, has some
limitations: (1) The study area has limited parametric
records, with shallow landslides being one of them;
and (2) As in other geographic modeling studies
focusing on natural break categorization, the shallow
slide susceptibility characterization is relative.; (3)
Similarly, TWI and SPI categories derived from DEM
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Figure 7: Shallow slide and terrain distributions based on shallow slide susceptibility values

will inherently include DEM mistake; (4) In addition,
causative factors are scarce for the study field, from
which impactful factors are sorted and used in the
research [11].

The primary benefit of the suggested model is (1)
Developing neural network models require less
statistical training than conventional models, and (2) it
is an essential and quick approach for preliminary
forecasting. The proposed model might be utilized as
a starting point for developing preliminary warning
systems, but long-term verification and subsequent
upgrading are necessary.

5. Conclusion

Despite several research, there is no one-size-fits-all
approach for either predicting or preventing its
incidence. We may, however, avoid losses by
following susceptibility maps based on the available
causal variables. Landslide susceptibility mapping is
an essential technique for predicting the likelihood of
landslide events in mountainous terrain. As a result,
high-quality landslide prediction models are critical.
The Sindhupalchowk district is one of the areas of
Nepal that are most prone to landslides due to its high
number of steep hills. In hilly areas of Nepal where
there is a lack of accessible current data, machine
learning approaches can be a viable way to evaluate
landslide susceptibility since they reduce the influence
of subjectivity and allow for better repeatability. The
artificial neural network approach of machine learning
is used in this work to provide a thorough landslide
hazard assessment. The AUC method in the study
gave high success and prediction rates indicating that
the susceptibility model was reliable and appropriate
in the geographic location. This study was conducted
for the Sindhupalchowk area and yielded positive
results that may be extended to other places if reliable
parameters are obtained. In future rounds of the study,
the approach must be validated. Local authorities can
use hazard information to manage their land use and

avoid landslide-prone areas. The resulting landslide
hazard zone map will be a significant resource in the
Sindhupalchowk district’s regional planning. It will
be extremely beneficial in determining human
relocation and settlement depending on the frequency
of landslide occurrence.
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