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Abstract
Image season transfer problem is an application domain of image-to-image translation and defined as
transferring image from one season to another; for instance, transferring summer image to winter and it’s vice
versa. Image-to-image (I2I) translation involves generating a new synthetic form of a given input image with
a specific alteration by keeping the source image attributes intact and their mapping from source to target
domain. I2I is one of the popular applications of deep learning neural networks. One of successful variants of
Generative Adversarial Networks (GANs), CycleGAN has been implemented with unpaired data samples. The
CycleGAN is two domains, unsupervised approach to cyclic consistency which can be trained without pair
image samples. Residual Network (ResNet) is used for generative model and PatchGAN is for discriminative
model in the first CycleGAN, and hence ResNet generator became general practice. The Residual Network
architecture is replaced here with U-Net architecture. U-Net is considered as a fast neural network and works
fine even with small size of dataset.This study uses two sets of landscape images to train the GAN model and
hence transfer the season from summer to winter or in opposite direction.
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1. Introduction

Generative Adversarial Networks (GANs) are big
enables for Image-to-image (I2I) translation problems.
GAN is an unsupervised deep learning framework
with two models, a generator model (say G) and a
discriminator model (say D), are trained
simultaneously [1]. Both models compete against
each other to reach the state where the discriminator is
no more able to distinguish the real image from data
distribution or fake image from generator pool. This
is the most desired state and commonly known as
Nash equilibrium point. Hence, the generator model
now tries to generate plausible image to fool the
discriminator model, while the discriminator model
tries to distinguish real and fake samples fed to it as
input image.

Image season transfer, typically image from summer
to its winter image; is an application domain of image
to image conversion. It is highly challenging task to
construct a deep neural networks that can translate an
image from one season to another. In recent years,
generative adversarial networks (GAN) and their

variants have been used to provide learning-edge
solutions to image-to-image conversion problems [2].
The generative and discriminative models both can
have any algorithm as long as the generative models
have the capability to learn from training data
distributions and discriminative models have the
capability to extract the feature for classifying the
generator output. [1] [2]. GAN has several successful
variants from supervised to unsupervised learning,
from single modal to multi-modal output, and from
single domain to multi-domain translation [3].

Figure 1: CycleGAN Operations
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The CycleGAN is an approach to cyclic consistency,
single-modal, unsupervised and two domain image to
image translation which can be trained without paired
samples [4]. The CycleGAN uses two generative
models (say GAB and G BA), and two discriminative
models (say DA and DB). Particularly, GAB(a) is
generated image (a fake winter image) of a summer
image ‘a’ from domain A, generated by GAB
generator model. The GAB(a) output goes to
discriminator DB for real or fake detection. At the
same time, GAB(a) goes to generator model GBA and
generates back to GBAGAB(a) as a reconstructed
summer image which is going to compare with
original summer image ‘a’ and hence completes a
cycle as shown in figure above. Similarly, generator
GBA takes ’b’ as in input and generates GBA(b), a fake
image of winter sample ’b’ from domain B. The
generator output is sent to discriminator DA and
compared with real summer sample, ’a’ sent from
domain A. At the same time, the generator output also
goes to first generator, GAB and now produces
reconstructed winter image GBAGAB(a) for
cycle-consistency.

If we combine both operations, we find CycleGAN
framework as shown in figure below. The first cycle
is called as forward cycle (summer to winter) and
depicted here with red cycle. The blue cycle in figure
represents backward cycle. The red cycle is named
as forward cycle and blue cycle as backward cycle
(winter to summer).

Figure 2: CycleGAN Framework

2. Problem Statement

Seasons are division of year that marked by changed
in weather, ecology, and amount of daylight. Change
in seasonality in the nature has a great impact on the
environmental and visual features of landscape [5].
For various studies and planning, the landscape image
is compared with its counterpart season (summer to
winter and vice-versa). Taking the real picture of
landscape image in different season, there will be a

long wait of almost six months. And it is practically
hard, and expensive to collect such paired image
dataset having outdoor natural landscape. In such
situation, unpaired dataset from different domains are
used for image-to-image conversion problems. The
generative adversarial networks are deep learning
approaches; they usually need large dataset for model
training.

In case of unpaired dataset from different domain,
CycleGAN is a typical model of generative
adversarial networks approach of image to image
conversion. The CycleGAN uses two loss functions
namely adversarial loss (mean square) and
cycle-consistency (absolute) loss. The new
CycleGAN is built with U-Net generator and
PatchGAN discriminator and hence the loss functions
need to be assessed during model training. The
training image data from two different domains (i.e.
summer and winter) simultaneously passed to the
model through two separate standard GANs but in
opposite directions.

3. Related Works

Since 2014, Generative Adversarial Network (GAN)
is in existence in the field of deep neural networks.As
a deep learning framework, the generative model and
discriminative models both can be trained
simultaneously[1]. On the other hand, Alotaibi A.[2]
elaborated different approaches of deep generative
adversarial network’s algorithms for image-to-image
conversion and classified the algorithms in two major
classes: discriminative feature learning and generative
feature learning. And different variants of GANs are
categories with respect to their applications.Especially
for unpaired datasets, CycleGAN, DiscoGAN,
DualGAN and AsyGAN are common GAN variants
for various research studies of unsupervised
translation with cyclic-consistency approach.
CycleGAN is able to learn well with one-to-one
mapping, however other variants such as DiscoGAN
and DualGAN can also work with many-to-may
learning mode.

Zhu et al.[4] proposed CycleGAN as a new generative
adversarial network for unpaired image-to-image
translation using cycle-consistency scheme. It uses
two generative networks and two discriminative
networks. The adversarial network contains three
convolutional layers, several residual blocks with skip
connections, two fractionally-strided convolutional
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layers with stride value of 0.5, and one final
convolutional layer that maps features to RGB color
image. This architecture uses instance normalization.
For the discriminator networks, they have used 70x70
PatchGAN. The two objective functions of
CycleGAN are adversarial loss and cycle-consistency
loss.

Ronneberger et al. [6] developed U-Net, an image
segmentation architecture for deep learning neural
networks. Authors claim that U-Net is fast network.
The architecture consists of a downsampling path to
capture content and an upsampling path that enables
precise localization; connected by a latent space. They
claim that the network can be trained end-to-end even
with small sized dataset and outperforms the prior
best methods.

Isola et al.[7] introduced the concept of PatchGAN in
2018, the discriminative model. It works
convolutionally as just penalizes structure at the
predefined scale of patches N dimension for the given
image. The overall output from PatchGAN is finally
calculated by averaging the all response from the
patches and gives a probability; if it above the
threshold the image is real otherwise fake image.
Zhang et al.[8] clearly describes the concept of
receptive field of PatchGAN. As name imply,
PatchGAN uses a small patch for its computation.
The size of the patch for each layer is described by its
receptive filed.

4. Methodology

GAN has two sub-models: the generative model that
we train to generate new samples, and the
discriminative model that tries to classify the input
sample provided, as either real from the data
distribution or fake from the generated image pool.
These two sub-models are trained together in
zero-sum game perspective, in adversarial way. The
discriminative model maps the image features to class
labels. When both models satisfy with Nash
equilibrium, the generated image is the desired output
of the whole system.

CycleGAN is one of the first models to allow for
unpaired image-to-image training. There are two
collections of images and they are unpaired, i.e. they
don’t have the exactly same scenes in winter and
summer. CycleGAN utilizes two GANs, and each
GAN has a discriminator and a generator model, i.e.
there are four models all together. The first GAN

generates images of winter for given photos of
summer, and the second GAN generates images of
summer for the given image of winter. There are two
types of training losses with CycleGAN: Adversarial
loss and Cycle-consistency loss as shown in figure
below.

Figure 3: CycleGAN Loss Functions.

Adversarial Loss: The adversarial loss here
corresponds to the standard generative adversarial loss
function. In CycleGAN, it is considered as
discriminator loss.
For mapping function GAB: A –>B and discriminator
DB, where GAB(a) is generated winter image.

L1 = Eb1 +Ea1 (1)

where,
L1 : LGAN1(GAB,DB,A,B)
Eb1 : Eb−Pdata(b)Log[DB(b)]
Ea1 : Ea−Pdata(a)[Log(1−DB(GAB(a)))]

Similarly, for mapping function GBA: B –>A and
discriminator DA, where GBA(b) is generated summer
image.

L2 = Ea2 +Eb2 (2)

where,
L2 : LGAN2(GBA,DA,B,A)
Ea2 : Ea−Pdata(a)Log[DA(a)]
Eb2 : Eb−Pdata(b)[Log(1−DA(GBA(b)))]

Above two equatoins carry following information:
Ea - Pdata(a) and Eb - Pdata(b) denote the data distribution
in domain A (summer) and in domain B (winter)
respectively. Here ’a’ represents a sample image form
summer data collection and ’b’ represents a sample
from winter data collection. The term Log [DB(b)] in
the above equation (1) evaluates that the particular
image ’b’ is real or not.
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Hence the first part of the equation deals with real
sample. Additionally, the term Log(1-DB(GAB(a))) in
the equation (1) evaluates that the particular generated
image GAB(a) is fake or not. So, this part deals with
generated sample. Similarly, the first part of equation
(2) evaluates that the particular image ’a’ is real or
not and the second part, Log(1-DA(GBA(b))) evaluates
the generated image namely, GBA(b) is fake or not.
Adversarial loss is calculated as mean square error
form.

Cycle Consistency Loss: The cycle consistency loss
function corresponds to reconstruction of the image.
In CycleGAN network, it is termed as generator loss
function. For each image ’a’ from domain A, the
image season transfer cycle should be able to generate
it back to the original type image, and hence the
original sample ’a’ is compared with double generated
sample GBA(GAB(a)) as shown in equation (3) below.
It is known as forward cycle, expressed as Lc1 and
calculated as absolute error.

Lc1(GAB,GBA) =Ea−Pdata(a)||GBA(GAB(a))−a|| (3)

Similarly, for each image ’b’ from domain B, GAB
and GBA should be able to bring it back to the original
image, and hence the sample ’b’ is compared with
double generated sample GAB(GBA(b)) as shown in
equation (4) below. It is known as backward cycle,
denoted by Lc2 and calculated as absolute value.

Lc2(GBA,GAB) =Eb−Pdata(b)||GAB(GBA(b))−b|| (4)

4.1 The U-Net Generator

U-Net architecture consists of two parts;
downsampling and upsampling joined by a bottleneck
section which holds latent space. The downsampling
part is contracting and the upsampling part is
expansive in nature[6]. The standard architecture is
modified here with eight convolutional layers encoder
and eight convolutional layers decoder as shown in
figure below. Intuitively with each downsampling
encoding step, convolutional layer doubles up the
number of features channels by reducing the size of
the image, and ultimately reaches to latent space of
1x1x512.

The upsampling part of U-Net uses a latent vector and
gradually processes up and generates an equal sized
image as input i.e. 256x256x3. On the way to
generated image, the latent vector travels through
upsampling in each layer that halves the number of

feature channels. After each upsampling, a
convolution is performed and the result is normalized
with instance normalization and concatenated with the
analogously feature map from the downsampling path.
For the first three upsampling decoding steps, dropout
function is applied to protect the architecture from
vanishing gradient problem. Now the output is passed
through activation function ReLU before entering to
next step of upsampling. For the final convolutional
layer, tanh is used as activation function with no
concatenation and normalization function.

Figure 4: The Generative Unit.

The beauty of U-Net architecture is its skip
connections between equivalently shaped layers in the
upsampling and downsampling part of the network[6].
These shortcut paths of the network are quick enabler
to regain the abstract information from the original
image.

The intuition here is that with each subsequence layer
in the downsampling part of the network, the model
increasingly captures the ‘what’ of the image (i.e.
content of the image), and losses information about
‘where’ from the image. At the apex of the U, the
feature map will have learned a contextual part of the
image with very little understanding of where it is
located[9]. As U-Net is originally designed for image
segmentation; it does not flatten here but goes up with
required feature vector and finally gives an image of
input size.

4.2 The PatchGAN Discriminator

PatchGAN, by nature penalizes only structure at the
scale of local image sections commonly known as
patches. PatchGAN tries to distinguish if each NxN
patch in an image is real or fake. The input image for
the PatchGAN layers is divided in to patches of
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square of length N. The discriminator patch runs
convolutionally across the image and finally the
ultimate prediction from discriminator is calculated by
averaging the all responses from the patches[7]. The
patch responses are completely independent to each
other.The patch size used in each layer of PatchGAN
discriminator is called receptive field for that
particular layer. A PatchGAN is like a convolutional
layers network, however the receptive fields of the
discriminator layers turn out of 70x70 patches in the
input image[8].

The advantage of implementing a PatchGAN
discriminator is that the loss function measured is
found better on their ‘style’ rather that their
‘content’[9].The discriminator model network creates
a single channel of 30 x 30 feature map to represent
the loss.The discriminator model network creates a
single channel of 30 x 30 feature map to represent the
loss.The PatchGAN handles the arbitrary sizes of
input image; known as patch size,as far as the labels
have been predicted so that they are the equal size as
the loss map. It measures the quality of the input
image as per to the quality of local patches. That
means it concerns with local property rather than the
global property of the image.

Figure 5: The Discriminative Unit.

4.3 The Composite Model

The discriminative models are trained straight away
from real images from data distribution of training
dataset and the fake images from generated image
pool of the generator. However, the generator models
are not trained then after via their discriminator
models output. The generators are trained to update
for minimizing the training function loss predicted by
the discriminator for the generated images; defined by
mean square error and known as adversarial loss, as
such motivated generator to generate images that
better fit into the target domain [10].

Side by side, the generator models are also updated
based on how effectively they are at the reconstruction
of an image from source domain; defined by mean

absolute error and known as cycle-consistency loss,
that is further divided into two forms namely forward
cycle and backward cycle . Altogether, a generator is
updated with the combination of three loss functions:
one mean square error (L2) and two mean absolute
errors (L1).

The forward cycle consistency loss involves
connecting the output of the generator to the other
generator designed for reconstruction of the source
image. And, the backward cycle consistency loss
involves the image from the target domain and the
reconstructed image from the other generator.

A composite model for each generator model (GAB
and GBA) is needed. And a composite model needs
two inputs for the real image fro source domain
(summer) and target domain (winter) and three output:
the discriminator output, forward cycle generated
image (summer-winter-summer) and backward cycle
generated image (winter-summer-winter). Only the
weights of first or main generator model are updated
for the composite model. As comparing with
adversarial loss, cycle loss has huge influence during
training and hence nearly 10 times of adversarial loss
is assigned for weight balancing purpose.

4.4 Dataset

Yosemite Valley images collection is available as
Yosemite dataset. The dataset contents random
images taken from Yosemite national park area. The
dataset is properly categorized as summer and winter
training and test data. The dataset contains more than
1500 summer images and more than 1200 winter
images. After removing less significant images for
landscape property and duplicate images; there are
about thousand images of each season. The image
dimension is 256x256x3.

Ronneberger et al.[6] claim that U-Net not only a fast
network, but works very fine with small sized dataset
and outperforms the prior best methods.And data
augmentation and implementation is considered as a
part of future extension of the study.

5. Results and Discussion

After successful training of 50,000 iterations, the
model is able to perform for producing plausible
image of season transfer. The generator performances
and corresponding loss function recordings at
different stages of iterations are shown below. The
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discriminator loss is categorized as discriminator loss
with real samples and fake samples. The generated
loss plotted here is two generators of two composite
model of CycleGAN. As we go through loss
functions, the discriminator losses and generator
losses are gradually decreasing, and reach to
acceptable range common practice. Generally, with
GANs the discriminator loss is assumed to supress to
0.5 and for generator, around 2.0.

5.1 Training Performance

The model training iterations at the beginning
measured the discriminator loss of 5.0 for both real
and fake samples;similarly, the generator loss
recorded up to 20 for both samples. At 5000
iterations, the discriminator loss is settled to 0.3 and
the generator loss came around 3.0. Since that the
measures decrease gradually and reach to average of
0.15 and 1.7 respectively at 50,000 iterations.

Figure 6: Summer to Winter at 50,000 Iterations

Figure 7: Winter to Summer at 50,000 Iterations

5.2 Output and Evaluation

After 50,000 successful training iterations of model
learning, the discriminator part is separated and only
the generator model is used to test new sample image.
The input and output shape of image is 256x256x3. In

Figure 8: Model Training Loss Plot at 50,000
Iterations

a fig 9 below show summer to winter transfer; the first
image in the row is original input image (summer),
the image in the middle is generated image (winter),
and the last image in the row is reconstructed image
(summer) from the generated image

Figure 9: Summer to Winter Transfer and
Reconstructed Image.

Fig 10 below holds sample output of winter to
summer transfer. The first image in the row is original
image(winter), the image in the middle is generated
image (summer), and the last image in the row is
reconstructed image (winter) from the generated
image.
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Figure 10: Winter to Summer Transfer and
Reconstructed Image

The original input image is compared with its
reconstructed image for similarity index. So, this
metric examines the performance of CycleGAN
generator models. One of the popular image
assessment tool these days is the Structural Similarity
Index Metric (SSIM), which is basically used to
compare three features of original image and the
reconstructed image that is gone through two
generator models during a cycle. Those three features
are: Luminance, Contrast, and Structure.

Basically, season transfer and style transfer problems
are sensitive with contrast value of the images. SSIM
considers luminance, contrast, and structural value at
the same time. The tables below show that about 87
percent of original input image and the reconstructed
image have similarity.

Figure 11: Structural Similarity Index Matric (SSIM)
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