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Abstract
The low resolution images appear in many cases. Generative Adversarial Networks takes advantage of two
independent neural networks to create realistic data. The estimation of a high resolution image from its
counterpart low resolution image called super resolution which is used in this research using GANs. The input
is a low resolution human face of size 64×64 is used which keeps certain information but not details. This
network is capable of generation of images into 4× up scaling factors. The network is a min-max player game
where the generator and the discriminator are trained simultaneously and competed against each other to
reach the state where the discriminator is no more able to discriminate between the real and the fake image.
This state is known as Nash Equilibrium. The main aim of this network model is to minimize the loss of the
generator and maximize the loss of the discriminator so that the generator can generate more real looking
images and the discriminator will be unable to differentiate between the image generated by the generator as
the fake one. The use of Strong discriminator and the effective generator that is able to extract the coarse
and excellent skin texture from Low Resolution input images with adversarial training containing VGG based
perceptual loss can improve state-of-art of perceptual super resolution of Low Resolution images.
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1. Introduction

The space of application that can be implemented
with deep learning is nearly infinite. Super resolution
(SR) is one of the applications of deep learning. It’s
the estimation of high resolution (HR) images from its
equivalent low resolution (LR) images [1]. It is a
really difficult task building neural networks that
automatically reconstructs High Resolution images
from its Low Resolution images. Surveillance,
medical imaging, satellite image analysis, facial
recognition, compressed picture improvement, and
antique photo recovery are just a few of the
applications of super resolution.

According to the number of input Low Resolution
images, the Super Resolution can be divided into two
groups, which are single image super resolution
(SISR) and multi image super resolution (MISR) [2].
SISR is greatly admired due to its high effectiveness
compared to MISR. SISR is an ill-posed problem
since no one unique solution for a particular Low
Resolution image exists. Example (learning)-based

methods, interpolation-based methods, and
reconstruction-based methods are the three primary
types of SISR algorithms. Methods based on
examples have seen tremendous growth in recent
years due to their simple pipeline and amazing
performance.

GANs (Generative Adversarial Networks) takes
advantage of two independent neural networks to
create realistic data, developed by Ian Goodfellow,
then a PhD student at the University of Montreal in
2014 [3]. The generator and discriminator are the two
networks that train each other through multiple cycles
of generation and discrimination while also
attempting to confuse one another. The generator is
trained to create fake data, while the discriminator is
trained to make a distinction between fake and actual
data. The structural diagram of the GANs is shown in
figure 1.

GANs offer a robust foundation for super resolution
in accuracy and speed compared to Convolutions
Neural Network (CNN) which were incapable of
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Figure 1: Generative Adversarial Networks (GANs)

recovering finer details and often generate blurry
image in some case. GAN’s optimization method is a
min-max problem. The optimization process is
completed when the generator and discriminator reach
the Nash equilibrium. Any neural network may be
used as a generator and discriminator, with the
generator’s function to generate realistic data and the
discriminator as a classifier.

The need of super resolution and enhancement
technique still cannot be ignored, while digital
imaging devices with higher resolution have been
rapidly developed in last decade.

High resolution images and videos are fundamental
aspect for large displays like High Definition TV sets,
large computer displays, and most recently the hand
held smart phones. If the transmission network
bandwidth is not sufficient for such devices, then
visual pleasant from these devices cannot be achieved.

In this big data era, compression and Super
Resolution may be the best approach to decrease
network bandwidth use for services that provide
streaming of high-quality multimedia data. The
digital surveillance products sacrifice resolution to
some degree for long term stable operation. For
remote sensing, there is also a trade off between
spatial, spectral, and temporal resolutions. Similar
situation exist in medical imaging. Thus the need of
super resolution has attracted attention for the
computer vision research community for improving
reconstruction details of the scenes and constituent
objects in video surveillance, image/video
streaming,remote sensing applications, and medical
diagnosis.

The main goal of this paper is to develop generative
adversarial network for perceptual super resolution of
low resolution images, which can successfully retrieve
texture and finer details from low resolution image and
generate perceptual quality high resolution images.

2. Related Works

To tackle the SR problem in the realm of deep neural
networks, Dong et al. [4] was pioneer and proposed
SRCNN achieved a state-of-the-art result against the
previous work. After then, the field has observer a
number of network architecture. Still no method
based on Deep Neural Network can achieve the best
PSNR and the best quality at the same time [5]. More
sophisticated techniques, which often rely on training
data, seek to establish a complicated mapping
between low and high resolution image information
[1]. Many example-based approaches rely on low
resolution training for which the matching high
resolution is known Kim et al. [6] used deeply
recursive convolution network (DRCN), which
enables long-range pixel dependencies while keeping
the model’s parameter count modest. The use of LR
image as a direct input led to significant reduction in
computations, while the model’s capacity and
performance improvements are maintained.

Ledig et al. [1] introduce the SRResNet with skip
connection, a deeper architecture made up of residual
blocks for Low Resolution feature learning. This
SRGAN model uses the adversarial with perceptual
loss to prefer outputs based on a plethora of natural
images. This model employs a weighted sum of
content and adversarial loss to calculate perceptual
loss. They conclude that the performance can be
increase with the deeper network at the expense of
longer training and testing periods. The result is stated
on table 1.

Lim et al. [7] proposed EDSR model by eliminating
unnecessary batch normalization layer in residual
block as well as increasing the model’s size, which
achieve substantial progress. The batch normalization
layer only introduces a shift to the feature and this
shift may have an adverse effect on the ultimate
performance. Removing Batch Normalization does
not reduce performance but conserves memory and
computational resources.

Wang et al. [8] improves the visual quality by
improvising the SRGAN and proposed ESRGAN
which achieves higher visual quality and more
realistic results, that won PIRM2018 SR challenge [5].
In ESRGAN model batch normalization were
removed from the generator network and the basic
building block was Residual-in-Residual Dense Block
(RRDB), which combines dense connections in a
multi-level residual network. Beside the improved
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generator the ESRGAN model uses the Relativistic
GAN-based discriminator, which estimate the relative
loss rather than absolute loss. The model tested on
DIV8K data sets obtained PSNR 24.03dB and 0.54
SSIM.

Xining et al. [9] presented a GAN-based image super
resolution with an unique quality loss based on the
gradient magnitude similarity deviation IQA metric.
This model is not perfect while dealing strong
repetitive structures. And conclude that large quantity
of high-resolution training pictures with a variety of
textures can be benefits to generate visually appealing
results. The result is stated on table 1.

OPPO-Research [10] proposed RFB-ESRGAN based
on ESRGAN, which uses the multi-scale Receptive
Fields Blocks (RFB) in the generator network to
restore finer details and texture. RFB can extract the
coarse and fine features from input LR images. RFB
replace large kernels by several small kernels thus
reduce the model as well as time complexity. The
model tested on DIV8K data sets obtained PSNR
23.38dB and 0.5504 SSIM.

CLIPLAB [11] proposed to use GAN based on
ESRGAN with learned perceptual similarity (LPIPS)
loss instead of using VGG perceptual loss. The model
uses U-Net structure discriminator to fully utilize the
local and global content. They study the effect of
LPIPS loss and conclude that better LPIPS does not
always imply a higher visual quality and more
performance gain can be expected by combining more
effective generator architecture. The model tested on
DIV8K data sets obtained PSNR 22.77dB and 0.5251
SSIM.

Edgar et al. [12] uses Generative Adversarial
Networks with U-Net Discriminator, which allows
providing feedback to the generator on a global and
local scale. And this type discriminator gives the
generator more detailed feedback. U-Nets have shown
state-of-the-art performance in a variety of tasks.
They found that U-Nets The discriminator can retrieve
more information than the standard encoder
architecture discriminator. The U-Net discriminator
gives a more pronounced feedback to the generator
than standard discriminator. Thus this strong
discriminator makes the generator better.

3. Methodology

GAN is the main framework of this research, which
includes generator and discriminator network. The
methodology of the research is as in figure 2.

Figure 2: Work Flow of GAN Training.

3.1 The Generator

The generator network takes a Low Resolution image
of a dimension of 64×64×3 and a series of convolution
and up sampling generate a super resolution of a shape
256×256×3, while the discriminator examine High
Resolution images and tries to figure out whether a
given image is actual or not.

The objective of this research is to generate a super
resolution image ISR from a low resolution input image
ILR. The high resolution image IHR is complement of
the input low resolution image ILR as

ILR = dα IHR (1)

Where dα is the degradation operation which when
act on IHR results in ILR and α is the scaling factor
and is less than 1. The task is to find an approximate
inverse f ≈ d−1 to yield an High Resolution image
estimate super resolution ISR from ILR. This problem
is extremely difficult to solve as there exist a numbers
of possible estimation of Super Resolution image ISR

for which the relation ILR = dα IHR holds true.

The proposed generator network structure consists of
convolution blocks, Receptive field block residual
dense blocks (RFB-RDB), Receptive Field Blocks
(RFB) and up-sampling blocks as in figure 3.

The first is convolution block of kernel size of 3×3 with
filter size 64 followed by LeakyReLU as activation
function with alpha 0.2. Then follows stacked of 16
RFB-RDB, each RFB-RDB contains five RFB and
four LeakyReLU with alpha 0.2 as activation function
in it as in figure 4.

Figure 5 depicts the composite structure of the
Receptive Field Block. Receptive Field Block takes a
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Figure 3: Generator Network.

Figure 4: Receptive Field Blocks Residual Dense
Block.

mixture of smaller kernels like (1×1, 1×3, 3×1), which
has the ability to effectively decrease parameters and
can extracts very details line features like hair, skin,
edges texture etc which is needed in field of image
reconstruction. The Receptive Field Block is
composed of multi-branch convolution blocks with
different kernels size and dilation convolution layers.

The first branch is 2D convolution layer with filter size
of 64, kernel size 1. The second branch consists of two
2D convolution layers with filter size of 16, kernel size
of 1 in first convolution and 3 in second convolution
layers. The dilation rate of second convolution is 1.
The third branch consists of three 2D convolutions
with filter size of 16, kernel size 1 in first, (1, 3) in
second and 3 in third convolution layers respectively.
The dilation rate is 3 for the third convolution layers.
The fourth branch consists of three 2D convolutions
with filter size of 16, kernel size 1 in first convolution,
(3, 1) in second convolution and 3 in third respectively.
The dilation rate is 3 for the third convolution layers.
The last branch consists of four 2D convolutions with
filter size of 8, 12, 16 and 16 respectively, kernel size 1
in first, (1, 3) in second, (3, 1) in third and 3 in fourth
convolution layers respectively. The dilation rate is 5
for the fourth convolution layers.

The second, third, fourth, and last branch are
concatenate and scaled with 0.2 which is fed to

Figure 5: Receptive Field Block.

convolution block with 64 filters and kernel size of 1,
which is added with first branch output. All
convolution layers of each branches uses ReLU as
activation function. The output of 16 stacked
RFB-RDB is fed to a single Receptive Field Block
block and two 2× up-sampling blocks. In up-sampling
phase sub-pixel convolution is used, which makes
space transformation to the RFB output. Each
up-sampling block are followed by RFB and
convolution block of kernel size 256 and filter size of
3. The computational complexity is also further
decreases by reducing the number of parameters in
sub-pixel convolution. Final a convolution block with
filter size 3 and kernel size 3 with tanh as activation
function is used.

3.2 The Discriminator

The encoder structured discriminator is used in the
majority of GAN-based Super Resolution techniques.
This type of discriminator focused on either global
or local details. There has been study to improve
the performance of images [12]. An encoder-decoder
network popularly known as U-Net model is proposed
for discriminator. The U-Net discriminator allows for
both local and global data representation, giving the
generator additional useful feedback. The proposed
discriminator is as in figure 6.

The input of discriminator is the real/generated high
resolution images of size 256×256×3. The U-Net is
made up of down and up sampling networks linked by
a bottleneck, as well as skip connections that replicate
and concatenate the encoder’s feature mappings with
that of decoder. The first encoder consists of 2D
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Figure 6: U-Net discriminator.

convolution block with filter size 64, kernel size of 3
and strides of 2. Similarly the second, third, fourth,
fifth, and sixth encoder consists of 2D convolution
with filter size of 128, 256, 512, 1024, and 1024
respectively with kernel size of 3 and strides of 2.
After each convolution, there is a batch normalization
layer with momentum 0.8 and an activation function
called LeakyReLU with an alpha of 0.2. The output of
sixth encoder is fed to dense layer of 1024, which is
fed to dense units of 1 as encoder output for real and
fake output using sigmoid activation function.

The decoder parts consist of serial 2× up-sampling
blocks followed by 2D convolution, Batch
Normalization, concatenation, and ReLU activation
function. The first decoder consists of 2× up-sampling
blocks with 2D convolution layer of 1024 filter size
and kernel size of 3. The output is concatenated with
fifth encoder output after batch normalization. After
that, there’s a ReLU activation function. Similarly the
second decoder consists of 2× up-sampling blocks
with 2D convolution layer of filter size 512 and kernel
size of 3 followed by batch normalization. The output
is concatenated with fourth encoder output which is
followed with ReLU activation function. In the same
manner third, fourth, and fifth decoder has 256, 128,
and 64 filter 2D convolution with kernel size 3 after
2× up-sampling blocks and these outputs are
concatenated with third, second, and first encoder
after batch normalization respectively. All decoder
have ReLU as activation function. The last 2×
up-sampling blocks is followed by 2D convolution of
filter size 1 and kernel size 3 with sigmoid as
activation function. The decoder output is of size
256×256×1.

The U-Net discriminator DU conducts per-pixel
classification, segmenting the image into real and fake
areas, as well as the encoder’s original image
classification. Thus the discriminator is enabled to

learn local and global difference between fake and
real images. The discriminator loss is computed by
taking decisions form both encoder DU

enc and decoder
DU

dec . The total loss is calculated as

LDU = LDU
enc

+LDU
dec

(2)

The loss of encoderLDU
enc

is computed from the scalar
output DU

enc as

LDU
enc

=−Ex[logDU
enc(x)]−Ez[log[1−DU

enc(G(z))]] (3)

The loss of decoder LDU
dec

is computed as mean
decision over all pixels as

LDU
dec

=−Ex[∑
i, j

log[DU
dec(x)]i, j]−Ez[∑

i, j
log [1−DU

dec(G(z))]i, j] (4)

[DU
dec(x)]i, j and [DU

dec(G(z))]i, j refer to discriminator
output at pixel i,j.

3.3 Loss Function

To train the GAN network the objective function or
loss function, which we need to minimize to train the
model. The weighted sum of content and adversarial
loss is the perceptual loss function, that is the objective
function for this model.

Content loss is measuring the difference between
generated image and the real image, which are of two
types, VGG loss and Pixel-wise MSE loss. The most
common way to calculate is the pixel-wise MSE loss.
However, the MSE loss tends to generate overly
smooth textures for output images which result in
perceptually unsatisfying solution.

Thus pre trained VGG19 network functions is used
as feature extractors, extracting features of generated
images and real images. The perceptual VGG loss is
defined as

LSR
V GGi, j

=
1

Wi, jHi, j

Wi, j

∑
x=1

Hi, j

∑
y=1

(φi, j(IHR)x,y −φi, j(GθG(I
LR)x,y)

2 (5)

Where Wi, j and Hi, j are the dimensions of the feature
maps within the VGG19 network, φi, j represents the
feature map generated by the VGG19 network. It’s
the Euclidean distance between the produced image’s
feature maps and the real image’s feature maps. And
GθG(I

LR) represent the generated image.

The adversarial loss is calculated on the probability
returned by the discriminator network. The
discriminator is trained to distinguish the real image
from generated image. Adversarial training is used to
produce natural looking image. This adversarial loss
is calculated as

LSR
Gen = EZ [log(DU

enc(G(z)))+∑
i, j

log [DU
dec(G(z))]i, j] (6)
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The perceptual loss utilized for this paper is a
weighted average of VGG loss defined by equation 5
and adversarial loss defined by equation 6 as

LSR = LSR
V GG +0.001×LSR

Gen (7)

4. Data Set

For dataset, CelebAMask-HQ [13] used, is a large face
image data set containing 30,000 high-resolution face
images selected from the CelebA data set according to
CelebAHQ. The images of CelebAMask-HQ have the
size of 512 x 512. The images for low resolution are
chosen as 64×64 that keeps certain facial information.
A random flip is done for data augmentation which
create a mirror of original image. The images are
converted to pixel values to the range between -1 to
1. The generator uses the tanh activation function that
squashes the values to the same range.

5. Experimental Results and Discussion

5.1 Implementation details

The research is implemented in Google Colab, a
product of Google research hosted on jupyter
notebook. Keras is used as the high level python
library that provides a convenient way to define and
train deep learning architectures like Generative
adversarial network through its functional API.
Google’s TensorFlow, is used as a backend library to
perform low level array operation. The loss function
stated in equation 7 & 2 was used to train the
generator and discriminator respectively for 50K
iterations with a mini-batch size of 1. The network
was trained using the Adam optimizer with a learning
rate of 0.0002. The generative network and
discriminator network were alternatively updated.

5.2 Results and Discussion

The generator loss with image batch size of 1 for first
8,000 iterations is as in figure 7.

The loss of generator is high at beginning of the
iteration and slowly lower with increasing iteration.
This loss has variance.

The discriminator loss with image batch size of 1 for
first 8,000 iterations is as in figure 8.

Figure 7: Generator Loss for Batch size 1.

Figure 8: Discriminator Loss for Batch size 1.

The loss of discriminator for fake start with a high
value and real with low. These losses increases
slightly with increase in iteration and then decreases.
These losses has variance. The loss of generator and
discriminator have variance because they both are
competing against each other, so if one gets better the
other gets a larger loss.

Almost all deep learning model are compiled and
trained to minimize loss. This is not true for GANs
because smaller loss of generator doesn’t means better
quality of images. Because the generator loss is
graded against the current discriminator which is
constantly improving. The loss function evaluated at
different points thus cannot be compared. Loss of
generator may be high even image quality is
improving.

The accuracy of discriminator to discriminate real and
fake high resolution images with image batch size of 1
for first 8,000 iterations is as in figure 9.

Figure 9: Discriminator Accuracy for Batch size 1.

The discriminator accuracy for classifying real and
fake images should not remains high through out the
run because it indicate that generator is poor at
generating images in some way that it is easy for
discriminator to identify fake images. The accuracy
should hover around 70% to 80%.

The discriminator accuracy to detect real images starts
at high while the accuracy to detect fake starts at low.
The accuracy oscillate and become stable with
variance at the end of iteration as in figure 9. When
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the generator and discriminator are in a stable
operation high quality images are generated and while
during high variance loss lower quality images are
generated.

The generator was trained with batch sizes of 4. The
loss of generator with discriminator and discriminator
accuracy curves for training with batch size of 4 are
shown in figures 10 and 10.

Figure 10: Generator and discriminator loss for
Batch size 4

Figure 11: Discriminator accuracy for Batch size 4

With increasing batch size the the model is prone to
convergence failure. In figure 10 the accuracy curves
is almost at 100% most of the time after 900 iteration
indicating that discriminator is perfect at identifying
real and fake images.

Batch normalization, dropout, learning rate, activation
layers, convolution filters, strides, batch size, and
latent space are very sensitive parameters for GANs.
Finding a set of these factors that works is frequently
a subject of trial and error rather than following a set
of established rules.

Training GANs is a very challenging and achieving a
equilibrium is a trial and error method. Also perfect
convergence of GANs is not defined. Both generator
and discriminator learns from each other and
constantly improving their capabilities. If one
becomes more powerful at some time then the model
becomes unstable. When discriminator is not
powerful the randomly generated images may be
passed as real which may be far from realness.
Similarly when discriminator becomes more powerful
no generated images will passed as real in spite the
image very close to realness. For stable GANs the
adversarial concept should be fulfilled.

5.3 Outputs

The trained model was tested on facial images from
the Set5, Set14, and Nepali Portraits public benchmark
data sets. The SSIM and PSNR is calcualted for each
images. A higher scrore means a better result. The
SSIM and PSNR for the test images are as in figure
12.
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Figure 12: Input Low vs Output High resolution
image.

Quantitative evaluation of proposed model with the
SRGAN [1], GMGAN [9] on public benchmark
datasets is as in table 1. A higher score means better
quality. The average PSNR of this proposed model for
the data sets stated in table 1 is 27.976dB and SSIM
0.830.

Although the human visual system are powerful at
capturing and accurately assessing image quality than
standard quantitative measures like SSIM and PSNR.
The generated images looks sharper, real and

Table 1: Comparison with other models on Public
benchmark test (PSNR[dB]/SSIM)

Model
DATASET

SRGAN GMGAN
Proposed
Model

SET5
29.40/
0.8472

30.02/
0.8447

27.976/
0.830

SET14
28.49/
0.818

26.37/
0.7055

NEPALI
PORTRAITS

- -

perceptual in nature. From figure 12 it is clear that the
generator have retrieve texture and finer details like
lady’s hat, the small flower branch in front of face,
hairs and different facial parts present in low
resolution images.

The images produced during the training of model and
their corresponding feedback from U-net discriminator
is as in figure 13.

The first column image of figure 13 is at 100 iterations
and second column at 10,000 iterations and the last
column is the original high resolution image and the
bottom row is discriminator feedback on them.

Figure 13: U-Net output during different training
iteration.

Brighter pixel represents the assurance of the
discriminator of that pixel as being real and darker as
fake one.

The image is flip so that mirror image of original image
is generated for data augmentation as shown in figure
14.
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Figure 14: Image flip to create Mirror image.

6. Conclusion and Future Work

A generative adversarial network is used in this
research is composed of stacked Receptive Field
Blocks generator and U-Net discriminator was
proposed. The receptive field blocks with small
convolution kernel extract fine details of low
resolution input image for reconstruction. Also U-Net
based discriminator allows local and global feedback
to generator, which is more informative.

Thus the use of Strong discriminator and the effective
generator with adversarial training containing VGG
based perceptual loss is able to extract the coarse and
fine features from Low Resolution input images and
generate perceptual super resolution images. The use
of different loss function depends upon the
application on which the model is used. The texture
loss function is not considered in this research which
might be helpful in reconstructing realistic texture to
reduced visually outstanding artifacts, which is a part
of future work.
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