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Abstract
Musculoskeletal Disorders (MSDs), affecting majority of the world population, are the abnormalities related to
bones, muscles and joints. Radiographic studies are the most common technique for the detection of these
abnormalities as part of the medical diagnoses. An Attention-based Graph Convolutional Neural Network
(AGCNN) is implemented for the classification of such abnormalities in musculoskeletal radiograph images.
The AGCNN network model is firstly implemented on the standard benchmark MURA dataset, consisting of
40,561 upper extremity radiograph images, for the binary classification of radiograph images. The performance
of the network model, when compared with the DenseNet169 baseline model, showed improved performance
results. The network is then implemented on Xtremity dataset, consisting of 15,701 extremity radiograph
images, for the multi-class classification of radiograph images. The implemented network is an ensembled
network of Soft Attention-based Inception-ResNet-v2 network and Graph Convolutional Network (GCN). Soft
Attention map is used to localize the abnormality regions in the radiograph images representing qualitative
evaluation of the network. The network model achieved an accuracy of 0.884, average recall of 0.874, average
F1 score of 0.876, and average AUC score of 0.976. Furthermore, the performance results of the ensembled
network is compared with that of various state-of-the-art CNN architectures.
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1. Introduction

Musculoskeletal abnormalities involve pain or injuries
related to muscles, bones, and joints. These
abnormalities, which are broadly known as
Musculoskeletal Disorders (MSDs), include fractures,
dislocations, degenerative joint diseases, lesions, etc.
These disorders are very common, affecting the
majority of world population. According to a recent
study report on Global Burden of Disease in 2019 [1],
over 1.7 billion people were affected worldwide due
to musculoskeletal disorders. The diagnoses of such
abnormalities often require physical examination by
radiologists and the inspection of medical images
such as X-ray, Ultrasonography, PET scan, CT scan
and MRI. Among all of the medical images used for
examination, Radiographs (or X-rays), are the most
common and widely used. The cheaper cost and
shorter examination time with availability of results
within few hours are, most probably, the reasons for
the popularity of radiographs in such examinations.

Since these abnormalities affect a large population, a
proportionally huge number of radiologists are
required. However, this is not the case, as there are a
limited number of radiologists available for
examining a relatively huge number of people with
such disorders. Such huge workload can significantly
affect the diagnostic performance of radiologist. As a
remedy, a system model that can perform automated
detection of such abnormalities might be developed
for radiologists with the goal of preventing issues
from worsening as a result of failing to recognize
warning indications. The automated system model can
significantly reduce the radiologists’ workloads and
improve their diagnostic performance. Furthermore,
the system takes relatively less time for detection as
compared to the time-consuming manual detection.

2. Related Works

Medical image classification took its pace and
attracted many researchers with the advancement of
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deep learning techniques. The works done in [2, 3, 4]
laid significant foundations in the research world and
paved a path for future work enhancements on the
medical image analysis using deep learning
techniques. Gulshan et al. [2] implemented a deep
Convolutional Neual Network (CNN) in 128,175
retinal fundus images for the detection of different
grades of diabetic retinopathy and diabetic macular
edema. The implemented network was validated
using 2 different datasets: EyePACS-1 dataset
consisting of 9,963 and Messidor-2 consisting of
1,748 retinal images. Their network implementation
achieved high performance results on both datasets.
Esteva et al. [3] used a deep CNN network for the
classification of skin cancer on a large dataset of
129,450 images of skin lesions consisting of more
than 2,000 different diseases. They validated their
results, from the tasks of binary classification of skin
lesions on test set, by performing a comparative test
with board-certified dermatologists. They claimed that
their network achieved performance that is
comparable to that of the dermatologists. Wang et al.
[4] released a huge medical dataset, named
ChestX-ray8, and benchmarked on different CNN
models pre-trained on ImageNet. The dataset consists
of over 100,000 multi-labeled antero-posterior view of
chest X-ray images. They later updated the dataset to
include more images of different diseases and named
the dataset as ChestX-ray14. Rajpurkar et al. [5] used
a 121-layered densely connected CNN for pneumonia
detection with the network model trained on the
ChestX-ray14 dataset. They compared the
performance results of their implemented network
model with that of the radiologist. They concluded
that the performance of their network model for
detecting pneumonia was beyond that of a radiologist.

Rajpurkar et al. [6] released huge MURA dataset,
which consists of over 40,000 multi-view
radiographic images of 7 study types of upper body
extremity. They used a DenseNet169 network for the
prediction of abnormality in radiograph images. They
proposed an ensembled model by combining five
models with the lowest validation losses. Their model
attained an AUC score of 0.929, sensitivity of 0.815
and specificity of 0.887. Varma et al. [7] used a
DenseNet161 network for the detection of
musculoskeletal abnormalities in lower extremity
radiograph images. They used a large dataset of
93,455 radiograph images of multiple lower extremity
body parts, labelled as abnormal or normal. Their
model achieved an AUC score of 0.880, sensitivity of

0.714 and specificity of 0.961.

Almost all of the works related to the classification of
radiograph images involved the utilization of CNNs
only. CNNs are capable of capturing only the
individual image-level representation features.
However, they are unable to capture the correlational
representation features among a group of images.
Graph Convolutional Networks (GCNs) have the
capability of capturing the correlational features. The
main objectives of this research work are to explore
the application of GCN for the improvement in the
classification task and to implement the Soft Attention
mechanism for the localization of musculoskeletal
abnormalities in the radiograph images.

3. Research methodology

Figure 1: Methodology for classification of
radiograph images

3.1 Dataset Description

The radiograph images were curatively collected from
various local hospitals of Nepal [Dr. Iwamura
Memorial Hospital1, BPKIHS2 and BnB Hospital3]

1https://iwamurahospital.com
2bpkihs.edu
3https://bbhospital.com.np
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and online public repositories [AIMI4, Radiopaedia5,
and Medpix6]. The collected dataset, henceforth,
named as Xtremity dataset, is comprised of
high-quality extremity radiograph images of patients
who went under radiographic examination for the
diagnosis of musculoskeletal disorders. The
radiograph images in Xtremity dataset, with the help
of radiologists, were categorized into five different
classes on the basis of musculoskeletal abnormalities.

Table 1: Distribution of radiograph images in
Xtremity dataset

Class Train Set Test Set Total
Normal 4,138 348 4,486
Fracture 2,643 294 2,937
Lesion 2,210 246 2,456
Arthritis 2,312 257 2,569
Hardware 2,927 326 3,253
Total 14,230 1,471 15,701

The standard benchmark MURA dataset [6], collected
from the official repository of Stanford ML Group7,
was used for comparing the performance of the
network model with the baseline implementation. The
dataset consists of 40,561 multi-view radiograph
images which are labeled manually as either normal
or abnormal. The dataset, comprising of upper
extremity radiograph images, is partitioned into
training set of 36,808 images, validation set of 3,197
images and test set of 556 images.

3.2 Pre-processing and Augmentation

As the radiographic images were collected from
multiple sources, they had varying sizes, resolutions,
and colors. Therefore, the pre-processing techniques
that were applied to standardize all images were:

• Contrast Limited Adaptive Histogram
Equalization (CLAHE) [8] to enhance the
contrast of the radiograph images.

• Rescaling to resize the variable-sized images to
229∗299 pixel format.

• Normalization to convert the pixel values
between 0 and 1 in order to reduce the
computational complexity.

4https://aimi.stanford.edu/lera-lower-extremity-radiographs-2
5https://radiopaedia.org
6https://medpix.nlm.nih.gov
7https://stanfordmlgroup.github.io/competitions/mura

In order to prevent the model from overfitting
problem, following augmentation techniques were
applied, during the training stage, to introduce
diversity in the dataset:

• Lateral Inversion of radiograph images with a
probability of 0.5.

• Rotation of images randomly up to±30 degrees.
• Horizontal and vertical shift with range in the

interval [−0.2,+0.2].

3.3 Theoretical Background

3.3.1 Inception-ResNet-v2 Network

Inception-ResNet-v2 network [9] is a 164-layered
deep convolutional neural network architecture
pre-trained on ImageNet dataset. The
Inception-ResNet network introduces residual
connections that add the inception module’s
convolution output to the input. These connections,
also called skip connections, help with vanishing
gradient and exploding gradient problems. They also
help in the reduction of training time. The concept of
an inception module in the Inception-ResNet network
is based on convolutional kernels with multiple sizes
operating on the same level so that a larger kernel and
a smaller kernel can be effectively utilized for
capturing information that are distributed both
globally and locally, respectively.

3.3.2 Soft Attention Mechanism

The concept of attention mechanism is employed in
neural network architectures to focus on relevant
features that contribute more to the results. One such
technique is soft attention mechanism which was
originally employed in image captioning task [10].
The concept is inspired from the implementation of
skin lesion image classification [11] which showed
improved performance in the results.

Figure 2: Soft Attention block unit

The feature tensor (t) that streams down the
convolutional neural network is fed as input to the
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soft-attention block unit. The soft attention map is
calculated mathematically as:

fsa = γt(
K

∑
k=1

so f tmax(Wk ∗ t)) (1)

Here, t ∈ Rhxwxd represents a feature tensor that is used
as input to a 3D convolutional layer, Wk ∈ RhxwxdxK

represents the kth 3D weight, K represents the number
of 3D weights. The output from the 3D convolution is
fed to the softmax activation function, which performs
normalization operation, to produce K = 16 attention
maps. As shown in figure 2, the resulting attention
maps are combined to yield an integrated attention
map which performs as a weighting function (α). The
resulting integrated attention map represented by α

is then multiplied with the feature tensor (t) to scale
the salient feature values attentively. The resulting
feature values are further scaled by a learnable scalar
parameter (γ). Finally, the resulting features ( fsa) that
are attentively scaled are then concatenated with the
input feature tensor (t) as a residual connection.

3.3.3 Graph Convolutional Network

Graph Convolutional Network (GCN) [12] is one of
the many variants of graph neural network family
which operates on arbitrarily-structured graph data
unlike traditional neural networks which can only be
implemented on regular-structured data. The GCN
learns the features by aggregating the features from
the neighboring nodes. The weighted average of
neighbor’s feature vectors of each node is taken as
represented in red color in the figure 3. The idea of
weighted average is based on the assumption that
low-degree nodes would have bigger influence on
their neighbors whereas, high-degree nodes yield
lower impact as they scatter their influence at a greater
number of neighbors.

Figure 3: Schematic diagram of Graph Convolutional
Network

The propagation rule for each GCN layer is
summarized as:

H l+1 = σ(ÂH lW l) (2)

In equation 2, H is the hidden state (or node features
when layer, l = 0), Â = D̃−1/2ÃD̃−1/2 is the
normalized version of adjacency matrix, Ã is the
adjacency matrix with individual self-nodes taken into
account, D̃ is the diagonal degree matrix of adjacency
matrix Ã, W is the trainable weight matrix, σ is the
activation function, and l is the layer number.

3.4 Ensembled Network Model

The pre-processed radiograph images were fed to an
Inception-ResNet-v2 network integrated with soft
attention block for the extraction of feature vectors.
The final classification layer of the pre-trained
Inception-ResNet-v2 network was removed. A soft
attention block unit was added to the truncated
network. The soft attention block unit was used to
focus on the more salient features that were related to
the classification task. This was achieved by
providing higher weights to feature maps that are
more relevant and lower weights to the feature maps
that are less relevant to the prediction. After the soft
attention block, a dropout layer with drop rate of 0.2
was added. The dropout layer prevents the model
from overfitting during training phase by making the
neurons less dependent on each other. The dropout
layer was then followed by a fully connected layer
consisting of 128 neurons. The fully connected layer
was used as a feature encoder which converts the
higher dimensional feature vectors of the network to
128-dimensional feature vectors. This process of
encoding for dimensionality reduction was employed
for decreasing the computational complexity. After
the fully connected layer, a final dense layer with
softmax function was added relevant to the radiograph
classification task.

The feature vectors with 128-dimensions were
extracted from the final fully connected layer after
feeding the Inception-ResNet network with
radiograph images. Each feature vector which
represents an image was considered as a node in graph
G for building the graph structure representation for
GCN input. Graph (G) is represented by G = (V,E),
where V represents the set of nodes (or vertices) in the
graph, and E represents the set of edges. Edges in the
graph were represented by the adjacency matrix (A).
The corresponding element in the adjacency matrix,
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A(i, j), was set to one when there falls an edge
between nodes i and j, otherwise it was set zero. It
was assumed that there exists a connection or edge
when the node falls into the top k nearest neighbors of
another node. The nearest neighbors were calculated
according to cosine similarity metric. It characterizes
the latent correlations of nodes and discovers the
possible relationships among images. The cosine
similarity was calculated between node i and j as:

cosine(Xi,X j) =
Xi.X j

|Xi| ∗ |X j|
(3)

Here, Xi ∈ R1xM and X j ∈ R1xM represent feature
vectors of node i and j of extracted features X ∈ RNxM .
The adjacency matrix was constructed as:

Ai j =

{
1, if X j ∈ knn(Xi)orXi ∈ knn(X j)

0, otherwise
(4)

Here, knn(Xi) represents the k nearest neighbors of
node Xi based on cosine similarity.
Correspondingly, a degree matrix D, having
dimensions NxN which is same as that of adjacency
matrix (A), can be calculated as:

Dii =
N

∑
j=1

Ai j (5)

Here, Dii is an element of diagonal degree matrix D.

With the graph structure representation by normalized
adjacency matrix and feature vectors, the convolution
operation was performed in GCN as defined in
equation 2. The node representation was improved by
the GCN layer by taking the average of all neighbors’
features including itself. GCN with two stacked layers
were used to capture the latent relational
representations out of the CNN extracted features.
After each convolution layer, ReLU activation
function was applied. After performing convolution
on graph, the nodes were classified into different
classes by using a dense layer with softmax function.

3.5 Evaluation Metrics

3.5.1 Qualitative Evaluation

The qualitative evaluation of the AGCNN model was
done in two stages. First of all, soft attention map was
extracted from the soft attention block of the network
for localizing the key areas in radiograph images that
the network was focusing on for making the
prediction related to the classification task.

Furthermore, rectangular bounding box for localizing
the abnormality region was constructed from the
contour of the generated attention map. Second of all,
the node feature representations that were learned by
each node in the GCN network were visualized using
t-SNE visualization technique [13].

3.5.2 Quantitative Evaluation

The quantitative evaluation of the network signifies
the ability of generalization of the network. The
network model that is evaluated using one metric may
give satisfactory results, however, when evaluated
using another metric, it may give unsatisfactory
results. The network model was, therefore, assessed
in terms of several evaluation metrics to test the model
with respect to diversity.

4. Experimental Setup and Results

4.1 Experimental Setup

The pre-processed radiograph images were fed to the
modified Inception-ResNet network for pre-training.
The network model was trained with batch size of 32.
Adam optimizer with cross-entropy loss function was
used with an early learning rate of 10−4. After every
epoch, the value of learning rate was set to decrease
by a factor of 10 whenever there seem no
improvement in the validation loss. The early
stopping technique was used to prevent the model
from overfitting. After training the modified IRv2
network, 128-dimensional feature vectors were
extracted from the final fully connected layer. The
adjacency matrix representing the graph structure was
constructed by performing k-nearest neighbors (k-nn)
search on every node based on cosine similarity
metric. The value of k that achieve the best result was
explored by trying out different values. The extracted
feature vectors and normalized adjacency matrix were
fed as inputs to the two-layered GCN of size 128 each
for capturing the relational representation. Finally, a
dense layer with softmax activation function was used
to classify the nodes which represent the radiograph
images. The GCN was trained with Adam optimizer
with learning rate of 10−3.

4.2 Implementation on MURA

The performance of GCN was evaluated on the
validation set of MURA dataset by varying the values
of hyperparameter k.
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Table 2: Performance results with varying k

k Acc. Sens. Spec. AUC
10 0.835 0.789 0.876 0.897
20 0.839 0.763 0.889 0.893
30 0.838 0.762 0.908 0.893

The maximum value of sensitivity and AUC score was
achieved when the value of k was set to 10. Therefore,
the graph structure, with k equal to 10, was used as
input to the GCN network for further evaluation. The
baseline model [6] was formed by ensembling the five
best models which achieved the lowest validation loss.
The baseline model was implemented on holdout test
set of 556 images. The test set representations each
consisting of 556 images were created by performing
random stratified sampling for ten times on the
validation set. The performance of the AGCNN model
was calculated by averaging the results on those
samples.

Table 3: Comparison of the network with the baseline

Sens. Spec. AUC Kappa
Baseline [6] 0.815 0.887 0.929 0.705
AGCNN 0.82 0.89 0.902 0.711

Table 3 shows that the ensembled network achieved
better performance results on most of the metrics when
compared with the baseline model.

4.3 Implementation on Xtremity

4.3.1 Localization of Abnormality Regions

The key areas of the radiograph images highlighting
the regions of abnormality were localized by
extracting Soft Attention Map from the output of soft
attention block of the network. The key area
localization was done, by highlighting the class
discriminative region that the network focuses, with
heatmap and bounding box. Bounding box was
constructed from the contour of normalized heatmap
to make the localization results more evident. The jet
color map was used in the heatmap in which the high
intensity red color indicates the most salient region
where the network actually focused for making the
prediction.

The localization results shown in figure 4 with the soft
attention mechanism showed the network’s focusing
ability of relevant features of the radiograph images.

Figure 4: Localization Results

4.3.2 t-SNE visualization of Node Embeddings

The t-SNE visualization of node embeddings was done
which illustrates the feature representations of nodes
that were learned by GCN. The visualization was done
to get a detailed picture of information that the network
learnt about the nodes and their neighborhoods. The
features of all nodes were extracted from the final
graph convolution layer of GCN.

Figure 5: t-SNE visualization of the GCN node
embeddings
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Each node in the t-SNE visualization shown in figure
5 represents individual radiograph image. The
visualization illustrates that the GCN features formed
five distinguishable clusters representing five different
classes. The fine-partitioned clusters represented that
the network effectively classified the nodes, which in
turn represent the radiograph images.

4.3.3 Quantitative Results

The performance of the GCN network was evaluated
on the Xtremity dataset by varying the hyperparameter
k.

Table 4: Performance results of the network with
varying k

k Accuracy Precision Recall AUC
5 0.8763 0.8733 0.8652 0.9768
10 0.8838 0.8797 0.8741 0.9764
15 0.8797 0.8764 0.8681 0.9769
20 0.8783 0.8747 0.8677 0.9763

The maximum value was achieved when the value of k
was set to 10. Therefore, the graph structure built with
setting k equal to 10, was used as input to the GCN
network for further evaluation.

4.3.4 Ablation Study

The ablation study of the AGCNN model was also
carried out. Table 5 shows the performance results
of the network with the integration of soft attention
mechanism and graph convolutional network into the
pre-trained Inception-ResNet-v2 network.

Table 5: Ablation Study of the ensembled network
model

Network Acc. Prec. Recall AUC
IRv2 0.853 0.848 0.843 0.971
SA+ IRv2 0.872 0.868 0.862 0.975
AGCNN 0.884 0.879 0.874 0.976

The analytical ablation study showed the
soft-attention mechanism integration into the
Inception-ResNet-v2 network improved the
classification performance accuracy by 1.9%.
Similarly, the addition of GCN resulted in an
improvement of accuracy by 1.2%. This individual
network analysis showed that the ensemble of soft
attention mechanism and graph convolutional network

into the Inception-ResNet-v2 pre-trained network
achieved improved performance results.

4.3.5 Comparative Study

The comparative study was performed on five most
popular state-of-the-art pre-trained CNN architectures.
The pre-trained architectures were evaluated on
different evaluation metrics. All the architectures
were trained up to 10 epochs with batch size of 32.
Table 6 shows the performance results of different
network architectures that were considered in the
study.

Table 6: Comparison of the network with SOTA CNN
architectures

Network Acc. Prec. Rec. AUC
V GG16[14] 0.759 0.748 0.739 0.93
ResNet50v2[15] 0.806 0.803 0.795 0.957
Xception[16] 0.823 0.82 0.810 0.964
DenseNet121[17] 0.82 0.824 0.811 0.964
IRv2224x224 0.831 0.83 0.821 0.967
AGCNN 0.884 0.879 0.874 0.976

After observing the results of different pre-trained
architectures, two findings were deduced. Firstly, the
network models performed the classification task
better with increasing depth of the network. In
addition to the network depth, the width of network
also contributed in the improvement of the network
performance which was illustrated by the better
results of wider Xception model than the
DenseNet121 model, even though DenseNet121
model is deeper network. Secondly, the ensembled
AGCNN network showed better performance results
related to the classification which proved that the
ensembled network can outperform any single
end-to-end pre-trained CNN architectures.

5. Conclusion

An ensembled AGCNN network model is successfully
implemented for the multi-class classification of
abnormalities in musculoskeletal radiograph images.
The network achieved above par performance results
despite the large variations in the extremity
radiographs. The ensembled network model also
outperformed various state-of-the-art end-to-end
pre-trained CNN models. The localization task with
soft attention map showed prominent areas
representing the abnormality regions on the
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radiographic images. The automated abnormality
classification helps medical professionals to prioritize
their worklist giving quicker diagnosis and treatment
to patients with critical conditions. The localization of
abnormality in the radiographs helps radiologists
combat fatigue, which in turn helps them increase
their performance.
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