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Abstract
Land use/cover (LULC) play an important role in ecological and hydrological processes. Hydrological processes
such as groundwater recharge, overland flow, and eco-biodiversity are associated with LULC. Kathmandu valley
(KV) and its surrounding areas have been experiencing rapid LULC change because of rapid urbanization.
A large swath of agricultural land in KV has been converted into build-up areas.Further studies of LULC
change adopting different models give a comprehensive understanding of LULC change and implement
area-specific actions to mitigate adverse effects. For LULC, this study extracted historic LULC of 2005 and
2015 from Landsat imagery. The classified maps were validated by comparing with ground truths taken from
historic Google earth imageries. The confusion matrix showed a higher resemblance between Classified
LULC and ground truths. It gave a Kappa coefficient of over 88% in each classified LULC. These two maps
along with driving forces of LULC including road networks, slope, and elevations were used to simulate future
LULC. DINAMICA EGO model is based on cellular automata, and the Land change modeler operates on the
philosophy of multilayer perception Markov chain Neural Network method. We evaluated the simulated LULC
of both maps using the error matrix module in IDRISI Selva. The Kappa coefficient of the simulated map of
2020 and produced LULC of 2020 are 70% and 78% for DINAMICA EGO and LCM. Both models predict that
agricultural land in the valley is transforming into urban areas. Both models predicted that around 80% of the
flat area in the valley will be of urban form in 2050.
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1. Introduction

Nepal is one of the least urbanized countries in the
world. However, the urban population of Nepal has
been increasing at a steady rate of 3.43%. Kathmandu
Valley (KV), the capital city of Nepal, contributes
22.4% of the total urban population [1] . It is also one
of the fastest-growing cities in the world [2]. In
consequence, the urban expansion in KV is increasing
rapidly. The Mountainous terrine and the scarce land
resources of KV are challenges for further expansion
results in haphazard urbanization [3]. The notion of
land use policy in Nepal was developed only with the
Eighth Five-Year Plan (1992-1996) which, established
land use plan as a long-term fundamental agenda to
address the problems in land management [4]. But
consequent civil war, political upheavals, increase in
household income due to remittance of migrant
workers accelerated urbanization while decreasing

government actions to properly manage urbanization
and enforce regulations worsen the situation. This
human intervention results in significant changes in
land use land cover (LULC) patterns in KV and its
surrounding area over the years. It has unintended
impacts on ecology, environment, streamflow,
groundwater recharge, ground water etc. [5, 6].Future
LULC simulation are necessary for future planning
and policymaking to mitigate future water scarcity,
ecological conservation, maintain biodiversity,
reduction of groundwater depletion by adopting new
groundwater recharge strategies and maintain stream
water flow throughout the year for sustainability of the
area. Many LULC change modeling studies have used
either of CLUE[7], SLEUTH[8], DINAMICA
EGO[9], Land Change Modeler[10], etc. for their
purpose. These models adopt different techniques
such as linear interpolation, statistical interpolation,
cellular automation, Markov chain to simulate the
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change of land categories. [11]

LULC changes in different locations are affected by
various factors natural or anthropogenic. The complex
interaction between factors and government policy
could affect future LULC.[11, 12, 13] Further studies
using different models give a comprehensive
understanding of LULC change over the years, and
implement area specific actions to mitigate adverse
effects resulting from this change. In the project work,
simulation of future LULC change of Kathmandu,
Bhaktapur and Lalitpur districts using DINAMICA
EGO, and Land change Modeler(LCM) is carried out.
These models are related to different modeling styles.
DINAMICA EGO is a cellular automata model highly
used to model projection of future physical and
biological processes due to present and past human
actions that directly or indirectly affect natural
phenomenon.[9] Similarly, the Land change modeler
operates on the philosophy of multilayer perception
Markov chain Neural Network method(MLP-MC)
[10].

The comparative study of different land use models
gives a tool to better understand the LULC change of
any area. As change model performance is based on
the underlying governing mathematical relationship
between existing LULC, driving variables, and
transition potential, some models might perform
better on a specific region with datasets, thus helping
to choose an effective method.[14, 12] In this study,
we choose two dominantly used land cover change
models to explore the LULC change of KV.

The rapid growth of the population in Kathmandu
valley results in the transition of the rural and
semi-rural areas to urban forms. This transformation
results in the transition of a vast swath of agricultural
land to settlements and sped up deforestation in
surrounding forests. The conversion of agricultural
land to build up area results in an expansion in
impervious surface affecting hydrological processes,
as these processes are a function of land cover. An
increase in the impervious area increases the runoff
during rainfall and reduces the amount of infiltration,
therefore increasing the vulnerability of floods during
rainfall and depleting must necessary groundwater
resources during the dry season. If this trend
continues, the severity of the problem caused by
land-use transform will worsen. Knowing future
LULC could help to cope with future conditions and
adopt additional measures to mitigate further damages
caused by human interventions. Future simulated

LULC not only helps to identify future dire conditions
but still expect future changes, to identify potential
zones of rapid change or zones that demand further
attention for policy intervention promptly to mitigate
effects The Main objective of the study is Projection
of Land-use/ Land-cover of Kathmandu using Land
change modeler and Dinamica Ego and compare their
result.

2. Materials and Methods

2.1 Study Area

The study area encompasses Kathmandu, Bhaktapur,
and Lalitpur districts situated in the lesser Himalayan
region in the central part of Nepal. The geographic
area lies between 27o25’ to 25o50’ latitude and 85o10’
to 85o50’ longitude. The region represents wide
ranges of topographic features of a bowl-shaped
valley (named Kathmandu Valley) surrounded by four
mountain ranges Shivapuri, Phulchoki, Nagarjuna,
and Chandragiri. It has an average elevation of 1350m.
Temperate climate having dry winter and hot summer
with a mean annual temperature of 16oC to 20oC and
mean annual precipitation of 1200 to 1400 mm
dominated by Four months of monsoon.[15].The
entire area is drained by Bagmati river.

Figure 1: Study Area

Plain topography and fertile soil of KV (lake
deposition) have been an attraction for the settler
throughout history. However, since 1980 urbanization
in Nepal has paced rapidly in addition civil war
started in 1996 pushed it into new level as a result the
population of KV is booming, Kathmandu
metropolitan in KV is growing at a rate of 4 percent
per year. The lack of sound government’s land use
policies to restricts haphazard urban sprawl puts
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tremendous pressure on natural resources endangering
its fragile ecosystem [16]. The urban and peri-urban
area of the region is divided into two metropolitan and
surrounding 16 municipalities. Most of the urban
sprawl is limited in the valley area, whereas the
southern portion and surrounding mountains are
composed of steep high hills unsuitable for
settlements and agricultural production. A section of
the northern part lies in Shivapuri national park.

2.2 Data Acquisition and Processing

Remote sensing data for LULC classification were
acquired from Landsat 7 and Landsat 8 data based on
their availability(Figure 2). Monsoon season is best
season for collecting remote sensing images as it is
the flourishing time for vegetation but during this time
of the year most of the area were covered with the
clouds preventing acquiring cloud free data. The data
were acquired in the month of September to December.
Landsat 7 imagery used for the classification of LULC
of 2005. the data had with data gap caused by scan
line corrector failure therefore these gaps were filled
using Landsat gapfill tool for ENVI software. The
spatial resolution of Landsat images were 30m.The
characteristics of Landsat images are included in Table
1

Figure 2: Natural band combination of Landsat TM
and OLI sensors of study area of year 2005, 2015 and
2020

The various parameters govern the LULC
change,including government policies, socioeconomic
factors, land change patterns, road networks, rivers,
soil type, slope, elevation, etc.[17]. Due to the limited
data availability, the drivers of LULC changes in the
study area included are distance from the road
networks, slope of the area, elevation, soil type, and
reserved land. The driving variables for the LULC
change analysis were gathered from various sources.
Digital Elevation Model (DEM) of resolution 30m of
the area was downloaded from SRTM. DEM was

further processed to fill up sinks using ArcMap. A
slope map of the region was prepared using the slope
tool in ArcMap.

Road network and National park boundary were
obtained from ICIMOD data repository. The road
networks were classified into highway, metalled, and
main trailed. Using road networks, road to distance
variable was prepared using Euclidian distance
algorithm in ArcMap. The soil data used in the study
were acquired from FAO’s world soil data portal.
According to FAO’s soil data study area includes only
two types of soil. All of the data were converted into
raster of resolution 30m and clipped by study area
boundary.Drivers of LULC are shown in Figure 3

Figure 3: Additional data sets for LULC change
simulation

2.3 Land use/cover classification

2.3.1 Collection of Satellite Imagery

USGS is the free, open sourced, and extensively used
primary source of remote sensed earth’s surface data.
Landsat 7 and Landsat 8 are the most widely used
satellite imagery from USGS for LULC classification.
Landsat 7 data were selected for the year 2005, and
Landsat 8 data were used for the year of 2015 and
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Table 1: Characteristics of the Landsat images

SN Date Satellite Sensor Path Row Resolution
1 9/9/2005 LANDSAT 7 Enhanced Thematic Mapper(ETM) 141 41 30
2 12/26/2015 LANDSAT 8 Operational Land Imager (OLI) 141 41 30
3 11/5/2020 LANDSAT 8 Operational Land Imager (OLI) 141 41 30

2020. All of the data gathered had either no or less
than 5% cloud cover and taken at the relatively same
period of the year to avoid cloud masking and seasonal
variation.

2.3.2 Landsat Image Processing

Landsat 7 imagery used for the classification of
LULC of 2005 had with data gap caused by scan line
corrector failure so, these gaps were filled using
Landsat gap-fill tool for ENVI software. Landsat
image processing involves preprocessing and
post-processing. Two software packages widely
applied for image processing are ArcGIS and ENVI.
ArcGIS is generally adopted for different
geoprocessing activities where as ENVI is utilized for
the classification of LULC from remote sensed
imagery.

This study makes use of ENVI software for
radiometric correction of each band in the
preprocessing process. The unnecessary data were
removed by clipping corrected imagery using a
boundary shapefile. The rectified bands were
combined to form composite bands to identify
land-use types in the area. Different band
combinations are useful to recognize various
categories of land use. For example, 5,6,4 band
combination of Landsat 8 is helpful to separate water
bodies and land.[18]

The band combinations were employed to create
training sample polygons that are regions of interest
for classification purposes. Based on the training
samples, LULC was categorized into four dominant
categories: urban, agriculture, forest, and water bodies
using a maximum likelihood classification classifier.
The process was repeated numerous times till desired
LULC Map was obtained.[19]

2.3.3 Accuracy assessment of the LULC
classification

Classified LULCs were compared with ground truth
prepared from the historical google earth map. One
hundred and eighties random sample points were
selected such that each Category has at least minimum

numbers of ground truth points. The accuracy of the
land use map was Carried out using the Kappa
coefficient determined from the confusion matrix.

Kappa =
TotalAccuracy−RandomAccuracy

1−RandomAccuracy
(1)

If the accuracy of the classified LULC was below the
acceptable value, the process of land use classification
was repeated until required accuracy criteria would
meet, which involves creation of additional regions of
interests for each Category.[20]

Figure 4: Flow chart of LULC classification

2.4 LULC simulation using DINAMICA EGO

The DINAMICA EGO models are based on cellular
automata. It has a user-friendly environment showing
diagrams of a sequence of tasks represented by each
functor (collection of algorithms that perform a
specific task) and connected by a connector. By
connecting several functors, we can create an
advanced model, such as land change modeling.The
methodological flowchart of DINAMICA EGO is
shwon in Figure 4 [9]

2.4.1 Calculation of the Transition Rates

From the available historical LULC map, a historical
transition matrix is calculated. The transition matrix
represents the transition rate of one class to another
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over discrete time increments. The cells of a class that
transformed to another class in terms of numbers of
cells is obtained by multiplying the transition rate by
the total numbers of cells. The sum of transitional rate
of a category is always equal to one. The transition
rate defines the simulation of future LULC, i.e. the
percentage of land that will change to another state in
the future.[9]

2.4.2 The Weights of evidence and calculation of
the probability map

Depending on unique elements of evidence, the
weights of evidence statistical method calculates the
likelihood of an event happening. The probabilities in
the model give the possibility of a cell transforming
from one category to another. Our study considered
various static variables such as distance from the road,
slope, soil types, distance from existing LULC as
evidence for the most suitable area to transform to
another category. The model applies the Bayesian
method of weights of evidence is integrated for the
process. The weight of the evidence method considers
that the predictor’s patterns are provisionally
independent. DINAMICA EGO provides assessing
the independence hypotheses, a functor that defines
the weights of probabilities correlation.[21]

2.4.3 Transition functions (expander and patcher)

The transition functions tool determines the suitable
plots in the LULC that transform based on changes
figure out by the model. The expander can only
expand in a previous class of land cover. The patcher
uses a sowing method to manage the first fresh
patches. Patcher chooses the central patch of a
separate patch, and then specified cells are worked out
for the transition surrounding this nucleus patch. To
switch between the two transition functions, the
model splits cells. The patcher function creates most
patches; the program typically inserts these patches
near previously transitioned areas and road
networks.[21]

2.4.4 Calibration and Validation of the Model
Fitting

The model determined parameters of coefficient of the
weights of evidence, and transition rates using LULC
of year 2005 and 2015. The rate in the simulation
depends on a reasonable match between simulated
and reference maps. The model validates the process
after calibration of the model. validation ensures

performance of the model to meet desired purpose.

Figure 5: Flow chart of LULC classification
procedure of LULC modeling using DINAMICA
EGO

2.5 LULC Simulation using Land Change
Modeler

Multi-layer Perceptron- Markov Chain (MLP-MC)
neural network technique available in LCM tool in
IDRISI Selva was implemented for projection of
future LULC. The LCM tool has functions to
determine LULC changes, net gain, net loss, and net
transformation from one category to another LULC
category. The system has a simple interface and is
extensively used for LULC change analysis around
the world. The model utilized both dynamic and static
variables to determine the likely LULC of the
future.[22]

Independent and dependent variables such as
elevation, slope, distance from a road, distance from
existing land, distance from rivers, the port play a
vital role in LULC change prediction.[17] Even
though these parameters will change in the future, the
model treats them as the dependent variable. We used
the LULC of the previous time step as an independent
variable. Transition potentials for the change were
modeled using MLP neural network method using
LULC of 2005 and 2015. The algorithm used for the
model was backpropagation (BP) with one input layer,
one or more hidden layers, and one output layer, its
model transition rate using non-linear function. The
model takes a sample of pixels that transition from
one category to another for the training of the
transitional potential model. The model was trained
using 50At the beginning of the process, the default
hidden nodes were implemented. After further tests
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were carried out, and value was updated until the
process improve the overall accuracy and skill score
of the model. The outcomes of the MPL performance
are total accuracy and skill test score to the result. We
tested model skills by equation 2.

S =
(A−E(A))
1−E(A)

(2)

where: E(A)=The excepted accuracy, and A=The
measured accuracy.

S =
1

T +P
(3)

where T is the number of transitions in the sub-model,
and P is the number of persistence classes in the sub-
model. Using backward stepwise analysis, it is needed
to remove the parameters with no power in order to
improve simulation accuracy and skill score. When
performing a sub-model with all the parameters, each
variable was maintained constant one by one until the
one of the least effect on modeling was identified.

2.5.1 Markov Chain (MC) Modeling

The Markov Chain (MC) modeling was used to
conduct LULC change prediction, with the projection
date in 5-year periods beginning from 2020 and using
all transition potential sub-models. Current LULC to
the LULC of a future date, the MC determines the
probability of LULC change. It calculated the amount
of land that could change from the subsequent time to
the simulation date. We used classifications as states
of a chain in the Markov Chain procedure. The state
at the preceding time t+1, (Xt+1) only depends on the
time t (Xt) and is independent of the process passing
through Xt .[17]

X(t+1) = f (Xt) (4)

If P represents the transition probabilities matrix, Xt+1
is given by:

Xt+1 = Xt .P (5)

The Markov Chain analysis can create a transitional
probabilities file, which analyzes the likelihood of
LULC change in different periods. After that, we
analyze the loss and gain of land of each category
using a multi-objective land allocation method. We
assigned and superimposed all the class changed land
to produce the output while this assignment operation
was operating.

Figure 6: LULC Simulation using Land Change
Modeler

3. RESULT

3.1 LULC Classification

Figure 7 shows the Land use and land cover
classification of study area extracted from LANDSAT
imagery. The accuracy of LULCs were determined by
180 samples points taken from historical Google Earth
map. These sample ground truths represents ground
cover of that time period. These points are compared
with classified LULC to preapare transition matrix.
Table 2 shows the overall accuracy and total accuracy
of prepared LULC. It shows that all of the maps were
classified with reasonable degree of accuracy. Overall
accuracy of all of the maps are over 90% and Kappa
coefficient is above 88%

Table 2: Characteristics of the Landsat images

SN Year Overall.Accuracy Kappa.Coefficient
1 2005 92.78% 89.68%
2 2015 95.56% 93.68%
3 2020 92.22% 88.72%

3.2 Future LULC Simulation and Validation

This study simulated future LULC map using LULC
of 2005 and 2015, by two models: DINAMICA EGO
and LCM. The simulated maps are validated by LULC
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map of 2020. This study used ERR MATRIX module
in IDRISI SELVA for this purpose. Each simulated
maps are within reasonable degree of accuracy.

Figure 7: Simulated LULC for 2005, 2015 and 2020

Figure 8: Validation of simulated LULC

The Error Matrix Analysis module of IDRISI Selva
gave 78.6 percent accuracy of LULC simulated using
Land change modeler and similarly 70.3 percent
accuracy of LULC simulated using DINAMICA EGO.
These two values are within acceptable limits. Among
the categories, DINAMICA EGO has less accurately
predicted water bodies in comparison to other
categories while Land Change modeler predicted all
categories with similar accuracy. The results also
show that the patches formed from DINAMICA EGO
looks more realistic than bulky patches of
LCM.(Figure 8)

3.3 Simulated LULC of 2025, 2030 and 2030
using DINAMICA EGO and LCM

The change pattern in both model showed the plane
valley areas in proximity to urban center are highly

likely to convertible into buildup area where as
mountainous surrounding areas are likely to remain
same throughout the simulation period.

The trend shows that build up areas are increasing
steadily, whereas, agricultural land and forest areas
are decreasing. The result of change in water bodies
are contrasting. This is because water bodies
constitute only minor fraction of LULC and
likelihood of misclassification of water bodies also
higher due to grid size and width and area of stream.
Among two methods, DINAMICA EGO gave more
realistic pictures of future LULC.

Figure 9: Simulated Future LULC of 2025, 2030 and
2050 using DINAMICA EGO and LCM

Result also shows that the surrounding mountainous
regions of valley are less likely to convert other
categories. The changes are only seen in the foot of
the hill, where tendency of conversion of forest land
to agricultural land is dominant. The majority of
change of other categories of LULC to build up area
can be seen in valley area. This drastic change of
LULC could be result of flat land, existing road
networks and nearer to existing settlements.

Figure 10: Trend of LULC change
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4. Discussion and Conclusion

LULC map of 2005, 2015 and 2020 were prepared
from remote sensed imagery and validated using
Kappa statistics. Future LULC of different future
period were simulated based on historical change
pattern and different LULC change driving
parameters. Projected LULC was evaluated using
Error Matrix Module in IDRISI selva. The
comparison of simulated LULC and prepared LULC
of 2020 shows that Kappa coefficient for simulated
map from LCM resulted in higher kappa coefficient.

The higher Kappa coefficient of LULC from LCM is
due to model strictly restricts the quantity, extent, and
magnitude of the appropriation of the changes in more
susceptible area. Whereas Cellular Automata have the
flexibility to occur a shift in moderate susceptible area.
However, DINAMICA also have advantages in setting
pruning factors in each transition to improve the
model. It gives control of each transformation
independently based on pruning factors. Different
prune factors for different LULC categories allow
changes to occur in some areas having medium
susceptibility, and some transition occurs only in
higher susceptibility. By doing so, most of the
changes occur in the more likely locations other than
those unexpected LULC changes that happen in the
area, which is beyond the model’s capability to
predict. While interpreting the result of LULC
modeling, it is imperative to look at the realism of
forecasted LULC patterns. The model could give
higher accuracy at the expense of realism. The
incorporation of various factors of LULC change also
plays a vital role in determining the future landscape.
However, it is utterly tedious to incorporate all the
variables. In this regard Cellular Automata showed
more realistic projection. Projection of a realistic
LULC map and spatial accuracy sometimes comes
into conflict with each other. It also depends on the
purpose we carry the modeling and modeling effort
put forth. The unique qualities of the proposed maps
can be critical. Based on the modeling requirement,
the best fit between the modeled and the changes
seems sensible for identifying areas that are likely to
change in the future. However, the uncertainty
involved with modeling a fuzzy map that shows the
range of changes could express better prospects of the
change.

Lamichhane & Shakya (2021)[23] studied LULC
change of KV using the CLUE-S model. The study
resulted in a growing buildup area by 21.3% in an

expanse of reduction in forest and agricultural land by
20.4%. The outcomes of this study showed a similar
trend of LULC change. However, because of
consideration of the extensive area in this study (920
km2) could have resulted different transition potential
resulting in difference in rate of expansion of urban
area.

LULC patterns can be essential when LULC models
apply to phenomenon when the composition of a
LULC involves. It influences the hydrological
processes such as runoff, infiltration, evaporation,
time of concentration. Hence LULC modeling for
future scenarios is not always essential to spatial
accuracy of LULC forecast, but forecasting accurate
patch placement and appearances represent
fundamental importance. However, the accuracy
assessment of projected LULC for the future period
depends on the model’s ability to exactly replicate the
spatial location of changes. It gives good information
but does not capture patterns of change that could be
important parameters to assess the model’s
performance. We could further improve the result by
integrating social parameters like population growth,
distance from basic infrastructures such as hospitals,
schools, etc. Additional information, such as
government policies and intervention, would expect to
enhance results.

The simulated future LULC’s can be utilized for future
study of change in the stream-flow characteristics of
the basin,[24] impact on microclimate and extreme
precipitation because of urban heat island effect,[25]
study of alteration of groundwater recharge area [26],
change in water quality, [27] etc.
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