
Proceedings of 10th IOE Graduate Conference
Peer Reviewed

ISSN: 2350-8914 (Online), 2350-8906 (Print)
Year: 2021 Month: October Volume: 10

Synthesizing Human Face Image from Textual Description of
Facial Attributes Using Attentional Generative Adversarial
Network
Jupiter Tamrakar a, Bal Krishna Nyaupane b

a, b Department of Electronics and Computer Engineering, Pashchimanchal Campus, IOE, Tribhuvan University, Nepal
Corresponding Email: a jupiter.752534@pasc.tu.edu.np , b bkn@wrc.edu.np

Abstract
GAN (Generative Adversarial Network) is a revolutionary network architecture that changed the landscape
of unsupervised learning and photo-realistic image synthesis. Many types of research has been done for
improving the stability of GAN and the quality of the image synthesized. Recent studies are focused on
synthesizing images from text descriptions by conditioning the generator and discriminator on these text
descriptions. This task falls under the domain of text to image synthesis. In this work, research focuses on
implementing a GAN model, for synthesizing face images from a text description of facial attributes. To do so,
the model must know what description best matches the image region and vice versa. Hence to accomplish
this, the model must have an understanding of language and image. So, in this work, two pre-trained models
BERT and Inception-v3, are used. From the pre-trained BERT model, we extract contextual word embedding
and, from Inception-v3, image features. Now, using the information about both text and its image pair, the
model can generate images accordingly.

Keywords
GAN, BERT, Bi-GRU, Bi-LSTM, Inception-v3, Image synthesis

1. Introduction

Developing systems for the synthesis of face images
from text description have applications in various
fields such as photo editing, photo manipulation, etc.,
including criminal investigations. Image generation
tasks have been explored extensively since the
introduction of GAN. After its success, a whole new
domain of image synthesis has emerged. A
subdomain of it is text to image synthesis, where the
task is to generate images from the text description.
One of the early works done for the synthesis of
human face images from text description is
Text2facegan [1]. Despite using a small dataset of
10,000 face images for training the GAN model, they
were able to get promising results. In this work, a
more recent GAN model named AttnGAN [2] is
extended for text to face image synthesis. We used a
pre-trained BERT model to provide word embedding
for text encoder and pre-trained Inception-v3 to
extract image features. For training and testing the
proposed model, we sampled 12,000 text-image pairs
from Multi-Modal-CelebA-HQ Dataset [3] which

have 30,000 face images of size 1024 x 1024 with
captions describing different attributes of the face.

2. Related Works

The introduction of GAN [4] has popularized research
in the field of image synthesis. Some researchers
focused on increasing the stability of GAN while
minimizing hyperparameter sensitivity by introducing
a new concept of progressive increment of the layers
[5]. Recently more researchers are interested in
synthesis of images semantically aligned with given
text description. Moreover the researches are mainly
focused on synthesizing images of birds, flowers etc.
Following are summary of previous works for image
synthesis from a text description -

Nasir et al. [1] introduced the use of DC-GAN [6]
with matching-aware discriminator for synthesizing
64 x 64 face images from fine grained textual
descriptions. Using matching-aware discriminator the
network is able to learn relationship between matched
and mismatched caption for synthetic and real image.

Pages: 331 – 339

Synthesizing Human Face Image from Textual Description of Facial Attributes Using Attentional
Generative Adversarial Network

Reed et al. [7] introduced the use of GAN for
synthesizing 64 x 64 image from text description
along with training strategy such as matching aware
discriminator (GAN-CLS) , learning with manifold
interpolation (GAN-INT) and inverting the generator
for style transfer. Using GAN-INT-CLS the network
is able to increase variation in generated image for
same caption and learn style variations by
disentangling style and content.

Reed et al. [8] introduced the concept of bounding
box conditioning and keypoint conditioning for
synthesizing 128 x 128 image from text description.
Using bounding-box-conditioning, the network is able
to learn the location and position of objects and using
keypoint conditioning, the network is able to learn
what image to generate.

Zhang et al. [9] introduced the concept of multi stage
generation of image and conditioning augmentation
for synthesizing 256 x 256 photo-realistic images
conditioned on text descriptions. Using multi-stage
process, the network is able to refine details
conditioned on text description and add resolution at
each stage and randomness increased by conditioning
augmentation helped network to learn various poses
and appearances for same text caption.

Zhang et al. [10] improved multi stage training by
interleaving multiple generators in tree structure and
introduced simultaneous approximation of
unconditional and conditional distribution. By
interleaving multiple generators in tree structure, the
training of network is stabilized and by
simultaneously approximating unconditional and
conditional distribution the network is able to learn
both unconditional image generation and conditional
image generation.

Xu et al. [2] introduced the concept of paying
attention to relevant subregion for a word in text
description and synthesizing fine-grained details at
different subregion and also proposed deep attentional
multimodal similarity model (DAMSM). Attention
mechanism enabled the network to automatically
select word level conditioning for generating different
sub-regions of image and DAMSM helped network
for understanding fine-grained text-image matching.

In this work, the research is focused on synthesis of
human face images from textual description of facial
attributes. Here, the AttnGAN architecture proposed
in [2] is extended by using pretrained BERT model
for providing word embedding to the text encoder.

Also, text encoder is changed to Bi-GRU from Bi-
LSTM. Previous work for human face image synthesis
from text description [1] used skip-though vectors for
providing embedding to text encoder. The concept of
progressively increasing the layer [5] is also begin used
in the form of stage-wise network where the network
will generate images in multiple stages by increasing
the number of layers and image size. And to provide
variation in images and information about location of
object in the image the sentence augmentation and
word attention technique from AttnGAN architecture
is used.

3. Methodology

We train the model in two phases. In the first phase,
we train text and image encoders with real text-image
pairs. For training, we used the loss from DAMSM
model, equation 11, so that the text and image encoders
have the knowledge of text matching the image and
vice versa. Then in the second phase, the GAN model
is trained using word features and sentence features
from the text encoder and local image features, and
global image features from the image encoder. Figure
1 shows the implemented model.

3.1 Implemented Model

Text Encoder The dataset has ten captions per
image. We randomly select one caption during
training. Here, pre-trained BERT is used to provide
word embedding for the Bi-GRU encoder. Before
getting the input vector for BERT, we do some text
preprocessing. First of all, we remove punctuations in
the caption then all the words are lower-cased. We
used the BERT tokenizer to get tokens from the
caption. After tokenizing the caption, we add [CLS]
token at the beginning, [SEP] token at the end, and
[PAD] tokens after [SEP] if the sequence length is less
than the max length to make all sequence lengths the
same. Then we convert the tokens to ids in BERT
vocabulary. BERT has a vocabulary of 30,000 English
words. The tokenizer handles the words not included
in the BERT vocabulary by dividing them into
sub-words all the way to letter level. For example, the
tokenizer divides receding into subwords rec and
##eding. Here, as we do not require embedding for
[CLS], [SEP], and [PAD], we make them zero. And as
the actual tokens are divided into sub-words by the
BERT tokenizer, we added the embedding of these
sub-words to get the final embedding. Here, the

332

Proceedings of 10th IOE Graduate Conference

Figure 1: GAN model.

pre-trained BERT used is bert-base-uncased which
has 12 encoder layers and 768 hidden units. We used
BertModel as pre-trained BERT with
output hidden states set to True. We do this to get
outputs from all layers. We extracted word embedding
by summing hidden state outputs from the last four
layers. For making our model simple, we used a linear
layer to change the BERT dimension to the Bi-GRU
input dimension. Now, we use a single-layer Bi-GRU
encoder for encoding these embedding. We get word
features from the encoder’s cell output and sentence
features from the last hidden state output. We use
word features in the attention model, equation 14, to
get a word context vector for a region in the image
and also in the DAMSM model, equation 11, to
calculate word losses. We use sentence features as
input to the first generator network, Figure 3, in the
DAMSM model to calculate sentence losses and to
provide conditional loss for both discriminator and
generator network. This encoder is trained in the first
phase along with the image encoder using word and
sentence loss from the DAMSM model.

Image Encoder We used a pre-trained Inception-v3
model as an image encoder which we train along with
the text encoder during the first phase of training.
Using inception-v3, we extract two features, local
features and global features . We used the “mixed 6e”
layer to extract local features which have (17 x 17x
768) dimensions which we reshaped to (768 x 289).
Also, we used the last average pooling layer to extract
global features which have (1 x 1 x 2048) dimensions
which we reshaped to (2048). During generator
training, we use this trained encoder to extract image
features of the generated fake images from which we
get DAMSM losses equation 11 necessary for getting
total generator loss equation 17.

DAMSM Model Deep Attentional Multimodal
Similarity Model (DAMSM) takes word-level
features, sentence-level features, image local features,
and image global features as input. This model
provides loss which tells us whether or not the
generated image follows the provided description. We
first compute a similarity matrix between word-level
features and available sub-regions (289) by simply

333

Synthesizing Human Face Image from Textual Description of Facial Attributes Using Attentional
Generative Adversarial Network

calculating the dot product.

s = eT v, s ε RT×289
(1)

Then this score is normalized over all words.

si, j =
exp(si, j)

∑
T−1
k=0 exp(sk, j)

(2)

where, the score is computed for ith word and jth

region. Now, the normalized score is used to evaluate
region-context vector for a particular word. Here, the
intuition is for a word we are looking at all the
sub-regions and we select sub-region which is best
described by this particular word. So, for every word
we evaluate this region-context vector ci as weighted
sum over all sub-regions.

ci =
288

∑
j=0

α jv j, where α j =
exp(γ1si, j)

∑
288
k=0 exp(γ1si,k)

(3)

where, γ1 is a hyperparameter which controls the
attention of ith word for its relevant sub-region and α j

is a similarity score normalized for jth sub-region and
ith word over all sub-regions. Then we compute
cosine similarity between the word and its
corresponding region-context vector. This gives us
word level relevance R(ci,ei) for ith word.

R(ci,ei) =
cT

i ei

(‖ ci ‖‖ ei ‖)
(4)

As we are concerned with finding relevance between
whole description D and the entire image Q, we
compute relevance score R(Q,D) between image and
description. Now, first using word level relevance
R(ci,ei) the image description match score R(Q,D) is
given by-

R(Q,D) = log(
T−1

∑
i=1

exp (γ2 R(ci,ei)))

(1
γ2

)

(5)

where γ2 determines the importance of word for given
region context vector and the similarity score is
summed for all T words. Again, using cosine
similarity between sentence level features (e) and
global image features (v), the image description match
score R(Q,D) is given by-

R(Q,D) =
vT e

(‖ v ‖‖ e ‖)
(6)

Now, we calculate probability distributions so that we
can find exactly which image match which

description. These distributions are posterior
probability of description Di matching with image Qi,
P(Di/Qi), and posterior probability of image Qi

matching with description Di, P(Qi/Di). These two
posterior probabilities are -

P(Di/Qi) =
exp (γ3R(Qi,Di))

∑
M
j=1 exp(γ3R(Qi,D j))

(7)

P(Qi/Di) =
exp(γ3R(Qi,Di))

∑
M
j=1 exp(γ3R(Q j,Di))

(8)

When we calculate posterior probabilities using word
level relevance from Eq.(4) in image description score
Eq.(5) we get two losses with respect to word features-

Lw
1 =−

M

∑
i=0

log(P(Di/Qi)), from 5 and 7 (9)

Lw
2 =−

M

∑
i=0

log(P(Qi/Di)), from 5 and 8 (10)

Similarly, when we calculate posterior probabilities
using image description score Eq.(6) we get two losses
with respect to sentence features Ls

1 and Ls
2. Finally,

the total loss we get for DAMSM is:

LDAMSM = Lw
1 + Lw

2 + Ls
1 + Ls

2 (11)

Conditioning Augmentation (Fca(e)) provides
augmented sentence level features for first stage
generator (F0). Here, augmentation is done by taking
the mean µ and standard deviation σ of the sentence
level features. Now, σ is multiplied with a noise ε

drawn from normal distribution N(0,I). Finally, µ is
added with this product and we get our final
conditioning vector. This is done so that higher
variation in generated images can be obtained for the
same caption. So, this block takes sentence level
features e from text encoder and outputs augmented
vector c.

c = µ +σ ∗ ε, ε ∼ N(0, I) (12)

Figure 2: Conditioning Augmentation block.

334

Proceedings of 10th IOE Graduate Conference

Attention Model (Fattn
i (e,hi−1)) take inputs, word

level features (e) and the hidden context vector of
previous stage generator network hi−1 . Here, first the
word level features are brought to generator working
dimension (é) and then combined with the previous
hidden context. This is done by using dot product.

ś j,i = hT
j éi (13)

From this step, an attention score is evaluated for jth

sub-region and ith word. Finally, this score is used
to evaluate word-context vector (c j) for a particular
sub-region.

c j =
T−1

∑
i=0

β j,iéi, where β j,i =
exp(ś j,i)

∑
T−1
k=0 exp(ś j,k)

(14)

where, β j,i is an attention score for jth sub region and
ith word normalized over all words.Here, the intuition
is for one sub-region we are looking at all the words
and we select a word which is most important for
painting this particular sub-region. So, for every region
we evaluate this word-context vector which is the final
attention.

Fattn(e,h) = (c0,c1, ..,cN−1)ε RD̂ × N (15)

Generator The first generator network (F0)
generates the image using a latent noise vector drawn
from normal distribution N(0,I) concatenated with
output from Fca(e). The second (F1) and third
generator network (F2) generates the images using
output from Fattn

i (e,hi−1) and previous hidden
context. Hidden context for F1 network is output from
F0 network i.e. h0 = F0(z, Fca(e)) and hidden context
for following generator networks are
hi = Fi(hi−1 ,Fattn

i (e,hi−1)) f or i = 1,2. The hidden
context has dimension h ε RD̂ × N , where D̂ is
generator’s working dimension and N is context’s
available sub-regions. The generator networks F0 , F1
and F2 are responsible for up-sampling the images
respectively to 64 x 64, 128 x 128 and 256 x 256. The
up-sampling is done using nearest neighbor
interpolation with factor 2. The F0 network consists of
four up-sampling blocks so it brings the image size
from 4 x 4 to 64 x 64 and remaining two, F1 and F2,
consist of one up-sampling block each so they
respectively bring the image size to 128 x 128 and 256
x 256. The generators G0, G1, and G2 are responsible
for bringing the output channel to 3 corresponding to
RGB channel. Finally, the images generated from
each generators are x̂i = Gi(hi) f or i = 0,1,2.

Figure 3: F0 and G0 generator networks.

Figure 4: F1, G1, F2 and G2 generator networks.

Discriminator Three discriminators D0, D1, and D2
for three corresponding generators G0, G1, and G2 are
used. Here D0, D1, and D2 are responsible for
classifying whether the provided image is real or fake.
So, each discriminator network brings the image size
down to 4 x 4 by using down sampling blocks which
are implemented as convolution network with filter
size 4 stride 2 and padding 1. Here input to
discriminators are conditioning sentence embedding
from text encoder, fake images from respective
generators and real images resized to respective input
image size for each discriminators. The
discriminators D0, D1 and D2 each takes input image
of size 64 x 64, 128 x 128 and 256 x 256 respectively.

3.2 Training Objective Function and Losses

The training objective function comprises of losses
from all the generators LGi and discriminators LDi

along with the DAMSM loss LDAMSM. The main
objective function is -

L = LG + λLDAMSM, where LG =
m−1

∑
i=0

LGi (16)

where λ is a hyperparameter to control the overall
effect of DAMSM loss.

335

Synthesizing Human Face Image from Textual Description of Facial Attributes Using Attentional
Generative Adversarial Network

The generator adversarial losses (LGi) for both
unconditional and conditional losses is -

LGi = −
1
2

Ex̂i∼pGi [log(D(x̂i))]−
1
2

Ex̂i∼pGi [log(D(x̂i,e))] (17)

where x̂i ∼ pGi means data is from generator. Here
first part is unconditional loss which determines
whether the image is real or fake and second part is
conditional loss which determines whether the image
and the sentence match or not.

The discriminator adversarial losses (LGi) for both
unconditional and conditional losses is -

LDi = −
1
2

Exi∼pdatai [log(D(xi))]−
1
2

Ex̂i∼pGi [1− log(D(x̂i))]−

1
2

Exi∼pdatai [log(D(xi,e))]−
1
2

Ex̂i∼pGi [1− log(D(x̂i,e))] (18)

where x̂i ∼ pGi means data is from generator, xi ∼
pdatai means data belongs to true data distribution.
Here first part is unconditional loss which classifies
the image irrespective of the sentence input and second
part is conditional loss which classifies the image with
respect to conditioning sentence features.

4. Experimental Results and Discussion

4.1 Dataset

The dataset we used for training and testing the model
is Multi-Modal-CelebA-HQ Dataset. The dataset
contains 30,000 high-resolution face images each,
paired with ten text descriptions. Out of 30,000 pairs,
18,943 are of female faces and, the remaining 11,057
pairs are of male faces. During training, we select one
caption per image randomly. For this work, we
created a dataset of 12,000 pairs. We randomly
selected the pairs from the original dataset. Out of
12,000 samples, 6,000 are of male faces and 6,000
female faces. Now, we train the model on 9,600
text-image pair samples for 225 epochs, and we use
the remaining 2,400 text-image pair samples for
testing.

Although custom dataset of 12,000 is created, the
vocabulary of words present in the dataset is same as
that of original dataset. So, changing data in dataset
may have same vocabulary of words in captions but
result will definitely vary as the randomness during
training is high because from provided ten captions
per image, the selection of caption is random during
training. And variation in the caption for a given
image is also high. Also changing the image available
to the model will change the real data distribution and
as GANs are trained to approximate the real data

distribution the generated images will also change.
For example the word person may refer to male or
female and hence as the captions are randomly
selected for a given image it may some time refer to
male in real image and sometime refer to female. So,
the number of times the word person repeats for either
male or female real image the model will approximate
the image accordingly.

4.2 Model Training Details

We trained the model using Google Colab pro with
GPU backend. We used PyTorch version 1.8.1 and
python version 3.8.10 for implementing the model.
The optimizer we used for training is AdamW. The
parameters used in DAMSM model are γ1 = 4, γ2 = 5,
γ3 = 10 and λ = 5. Table 1 shows all other
hyperparameters used for training.

Table 1: Training hyperparameters.

For Encoder Training For GAN Training
Batch size = 32 Batch size = 32
Max epoch = 200 Max epoch = 225
Weight decay = 0.0002 Weight decay(D) = 0.0015
Learning rate = 0.00002 Weight decay(G) = 0.002
Embedding dim = 256 Learning rate(D) = 0.00015
Caption length = 26 Learning rate(G) = 0.0002
Z-dim = 100 Generator dim = 32
GRU input dim = 300 Discriminator dim = 64

Except batch size, max epoch, encoder learning rate,
generator learning rate and weight decay all other
hyperparameters are referenced from the paper [2].
We trained the model with the hyperparameters used
in [2] but the training was unstable and model was
colapsing. So we decreased the learning rate for
encoder from 0.0002 to 0.00002 and discriminator
learning rate from 0.0002 to 0.00015. Also we added
a weight decay and as general rule of using weight
decay ten times that of learning rate we set it to
0.0002 We set the batch size to 32 as using batch size
of 64 increased the encoder training losses.

4.3 Results and Discussion

For analyzing the effect of changing text encoder in the
GAN model, we trained two text encoders. One uses
Bi-LSTM and, another uses Bi-GRU with BERT word
embedding. So, this section discusses the sentence
loss and word loss from the DAMSM model for these
two encoders.

336

Proceedings of 10th IOE Graduate Conference

Figure 5: Sentence vs word losses for Bi-GRU and
Bi-LSTM.

Figure 5 shows the plot of sentence loss ,vs word loss
for both Bi-GRU and Bi-LSTM encoder. Here, the
difference between sentence loss and word loss for
Bi-GRU is more than that of Bi-LSTM. The
difference for Bi-GRU to be more may be due to the
breaking of words into subwords by the BERT
tokenizer, which reduces the actual word count in the
sentence. Also, the average number of words per
sentence in the dataset is about 16. So, the sentences
are to be padded, which also reduces the performance.
In both plots, sentence loss is greater than word loss
because word features provide more fine-grained
information than sentence features. So, in addition to
using sentence features for conditioning the
discriminators, we used word features for
conditioning the generators by adding an attention
model between the generators.

Figure 6 shows the plot of Bi-GRU sentence-loss ,vs
Bi-LSTM sentence-loss and Bi-GRU word loss ,vs
Bi-LSTM word loss. The sentence loss in both cases
is similar, but word loss is slightly less in the case

of GRU as compared to Bi-LSTM. Also, we can see
that, at starting of training, the word loss of Bi-LSTM
is greater than that of Bi-GRU because Bi-GRU uses
BERT word embedding, which is better than that used
in Bi-LSTM.

Figure 6: Sentence-loss and word-loss for Bi-GRU vs
Bi-LSTM.

4.4 Output

All outputs are from the model after training it for
225 epochs. Figure 7 shows the output of the GAN
model, with a Bi-GRU encoder on the top and, with
a Bi-LSTM encoder on the bottom, for captions from
test samples.

Figure 8 shows the images generated for custom short
captions. Here, we can see that model using Bi-GRU
can sense the word like eyeglass and eyeglasses are the
same but, the model using Bi-LSTM cannot. Because
the word eyeglass is not in the dataset vocabulary,
its embedding is not available to Bi-LSTM. Hence
Bi-LSTM cannot understand the word eyeglass. Bi-
GRU uses BERT word embedding and, BERT has its
own vocabulary. Because the word eyeglasses is not
in the BERT vocabulary, the BERT tokenizer divides

337

Synthesizing Human Face Image from Textual Description of Facial Attributes Using Attentional
Generative Adversarial Network

Figure 7: Output for captions from testing sample.

Figure 8: Output for short custom captions.

Figure 9: Word attention to image regions during
training.

the word eyeglasses into subwords eye, ##glass, and
##es. So, Bi-GRU receives a sum of embedding for
the subwords instead of eyeglasses. Hence, Bi-GRU
has a sense that the words eyeglasses and eyeglass are
the same. Also, we can see that model can generate

different images for the same caption, which proves
that the GAN model is not collapsing. Figure 9 shows
word attention to image regions depicted in the image
with white spots.

Evaluation Metric We used Fréchet inception
distance (FID) [11] as metric for accessing the quality
of generated image compared to the real image. We
chose FID as it is considered a standard metric for
accessing the quality of images generated by GAN
model. The Table 2 shows FID scores for the
aforementioned two models -

Table 2: FID score for the two models discussed.

Model FID Score
Bi-GRU with BERT word embedding 61.19
Bi-LSTM 64.24

338

Proceedings of 10th IOE Graduate Conference

For evaluation purpose we generated images for 2400
captions from test sample. In Table 2 we can see that
the model Bi-GRU with BERT word embedding have
lower FID score than that of Bi-LSTM. As less FID
score is considered better, the images generated from
Bi-GRU with BERT word embedding is better than
that of Bi-LSTM.

5. Conclusion

In this work, we tried to use AttnGAN [2] for
synthesizing human face images from the textual
description of facial features. Here we proposed to
change the text encoder from Bi-LSTM to Bi-GRU
with BERT word embedding to get better results from
the same GAN model. In Figure 7 and Figure 8, we
can see that the model using Bi-GRU with BERT
word embedding as text encoder can generate better
images as well as handles the same word with
different forms better than those using Bi-LSTM. So,
using a BERT word embedding with a text encoder in
the GAN model, we can generate images more
semantically aligned with the text description.

References

[1] Osaid Rehman Nasir, Shailesh Kumar Jha, Manraj
Singh Grover, Yi Yu, Ajit Kumar, and Rajiv
Ratn Shah. Text2facegan: Face generation from fine
grained textual descriptions. arXiv e-prints, pages
arXiv–1911, 2019.

[2] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han
Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong
He. Attngan: Fine-grained text to image generation
with attentional generative adversarial networks. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1316–1324,
2018.

[3] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and
Baoyuan Wu. Tedigan: Text-guided diverse face
image generation and manipulation. arXiv preprint
arXiv:2012.03308, 2020.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. Advances in neural information processing
systems, 27, 2014.

[5] Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

[6] Alec Radford, Luke Metz, and Soumith Chintala.
Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[7] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen
Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In
International Conference on Machine Learning,
pages 1060–1069. PMLR, 2016.

[8] Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel
Tenka, Bernt Schiele, and Honglak Lee. Learning
what and where to draw. Advances in neural
information processing systems, 29:217–225, 2016.

[9] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaogang Wang, Xiaolei Huang, and Dimitris N
Metaxas. Stackgan: Text to photo-realistic
image synthesis with stacked generative adversarial
networks. In Proceedings of the IEEE international
conference on computer vision, pages 5907–5915,
2017.

[10] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaogang Wang, Xiaolei Huang, and Dimitris N
Metaxas. Stackgan++: Realistic image synthesis
with stacked generative adversarial networks. IEEE
transactions on pattern analysis and machine
intelligence, 41(8):1947–1962, 2018.

[11] Maximilian Seitzer. pytorch-fid: FID Score for
PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.2.1.

339

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

	Introduction
	Related Works
	Methodology
	Implemented Model
	Training Objective Function and Losses

	Experimental Results and Discussion
	Dataset
	Model Training Details
	Results and Discussion
	Output

	Conclusion
	References

